ROADWAY DATA EXTRACTION TOOL
Implementation and Programming Guide

Q Safe Roads for a Safer Future
Investment in roadway safety saves lives

US.Department of Transportation

Federal Highway Administration

http://safety.fhwa.dot.gov

http://safety.fhwa.dot.gov

NOTICE

This document is disseminated under the sponsorship of the
U.S. Department of Transportation in the interest of information exchange.
The U.S. Government assumes no liability for the use of the information

contained in this document.

The U.S. Government does not endorse products or manufacturers.
Trademarks or manufacturers’ names appear in this report only

because they are considered essential to the objective of the document.

QUALITY ASSURANCE STATEMENT

The Federal Highway Administration (FHWA) provides high-quality
information to serve Government, industry, and the public in a manner
that promotes public understanding. Standards and policies are used to
ensure and maximize the quality, objectivity, utility, and integrity of its
information. The FHWA periodically reviews quality issues and adjusts its

programs and processes to ensure continuous quality improvement.

Cover photos: left: Thinkstock, right photo: Pexel Images, right bottom: Thinkstock

Form DOT F 1700.7 (8-72)

FHWA-SA-17-028

1. Report No. 2. Government Accession 3. Recipient’s Catalog No.

4. Title and Subtitle
Roadway Data Extraction Tool
Implementation and Programming Guide

5. Report Date
December 2016

6. Performing Organizations Code

7. Authors
Kraus, Edgar; Le, Jerry; Sharma, Sushant

8. Performing Organization Report No.

9. Performing Organization Name and Address
Texas A&M Transportation Institute
1100 NW Loop 410, Suite 400
San Antonio, TX, 78213-2255

Leidos, Inc.
11251 Roger Bacon Drive
Reston, VA 20190

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
DTFH61-10-D-00024

12. Sponsoring Agency Name and Address
United States Department of Transportation
Federal Highway Administration

13. Type of Report and Period
Covered
Programming Guide

Office of Safety 14. Sponsoring Agency Code
1200 New Jersey Avenue, SE HSA

Washington, DC 20590

15. Supplementary Notes
FHWA Project Manager: Robert Pollack

16. Abstract
The Roadway Data Extraction Technical Assistance Program (RDETAP) assists state and local agencies with the
expansion and enhancement of roadway data inventories with regard to the Model Inventory of Roadway
Elements (MIRE) and other roadway data elements. The RDETAP developed a management information
system called the Roadway Data Extraction (RDE) Tool. This tool was developed to assist states extract and
integrate critical data from available data sources and incorporate new value-adding data elements into
existing roadway data inventories.
The objective of the RDE Tool Implementation and Programming Guide is to document and explain the steps
used in extracting roadway inventory data from existing data sources to expand and enhance the roadway
inventory data available to states with regard to MIRE and other roadway data. The programming guide
describes the structure and code of the RDE Tool and provides examples of the process to implement the
RDE Tool at state transportation agencies. The intended audience for the programming guide are advanced
Geographic Information System (GIS) users and programmers as well as agency staff leading the effort to
implement the RDE Tool at a transportation agency with the intent o improve roadway data for use in safety
analyses. The RDE Tool Implementation and Programming Guide is a companion product to the RDE Tool User
Guide that details the steps and processes to execute the RDE Tool and which is intended for transportation
agency personnel that are going to use the RDE Tool as part of the agency’s roadway data extraction and
management workflow.

17. Key Words 18. Distribution Statement
Elements, Data Integration, Data Extraction, GIS No restrictions.

19. Security Classif. (of this report) 20. Security Classif. (of this 21. No of Pages 22. Price
Unclassified page) Unclassified 124

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized.

Table of Contents
1. Introduction 1
Background 1
RDETAP Development 1
Purpose of the Guide 2
Organization of the Guide 2
2. Model Inventory of Roadway Elements 5
Fundamental Data Elements 6
MIRE Data Model 7
3. Description of RDE Tool and Data Management Process 9
RDE Tool Components 9
RDE Tool Data Management Process 10
System Requirements 11
4. RDE Tool Geodatabases 13
InputData Geodatabase 13
IntermediateData Geodatabase 14
InternalData Geodatabase 15
MIREProject Geodatabase 19
UpdateFeature Geodatabase 20
5. RDE Tool Toolboxes and Scripts 21
Create Business Process 23
Update Features Business Process 33
Retire Intersection Features Business Process 39
Script Calculate Intersection Angle 39
6. RDE Tool Addin 41
Code Structure 41
XML Configuration File 43
Use of MIRE Toolbar 43
7. RDE Tool Modification Instructions 51
Recommended Process to Implement the RDE Tool 51
Changes to RDE Tool Data Model 52
Changes to RDE Tool Geodatabases 53
Changes to RDE Toolboxes 54
Changes to RDE Tool Toolbar 54
8. Case Study: Implementation of RDE Tool at Washington State DOT 55
Form Implementation Team 55
Establish Goals and Objectives in General Terms 55
Conduct Implementation Team Workshop 56

Table of Contents (continued)

Develop RDE Tool Modification Plan, Timeline, and Milestones 56
Conduct Implementation Team Meetings (Webinars) at Milestones 57
RDE Tool Modifications 57
Outlook and Lessons Learned 63
9. Case Study: Implementation of RDE Tool at Missouri State DOT 65
Form Implementation Team 65
Establish Goals and Objectives in General Terms 65
Conduct Implementation Team Workshop 66
Develop RDE Tool Modification Plan, Timeline, and Milestones 67
Conduct Implementation Team Meetings (Webinars) at Milestones 68
RDE Tool Modifications 68
Outlook and Lessons Learned 76
10. Concluding Remarks 77
11. References 79
Appendix I. MIRE Data Model Entity-Relationship Diagrams 81
Intersection Entity-Relationship Diagram 81
Intersection Leg Entity-Relationship Diagram 82
Segment Entity-Relationship Diagram 83
Ramp Entity-Relationship Diagram 85
Interchange Entity-Relationship Diagram 86
Horizontal Curve Entity-Relationship Diagram 87
Vertical Grade Entity-Relationship Diagram 88
Appendix Il. Safety Analyst Data Model Entity-Relationship Diagrams 89
Intersection Entity-Relationship Diagram 91
Intersection Leg Entity-Relationship Diagram 92
Segment Entity-Relationship Diagram .. 93
Ramp Entity-Relationship Diagram 94
Appendix . Feature Class Templates for Output Geodatabase 95
Generic Asset Node Template 95
Generic Intersection Template 95
Generic IntersectionLeg Template 97
Generic Ramp Template 99
Generic Roadway Segment Template 101
Appendix IV. Python Script Calculate Intersection Angle 105

List of Figures

Figure 1. Data Management Process. 10
Figure 2. Feature Classes in InputData Geodatabase 13
Figure 3. IntermediateData Geodatabase. 14
Figure 4. InternalData Geodatabase. 15
Figure 5. MIREProject Feature Classes. 19
Figure 6. MIRE Model Geodatabase. 21
Figure 7. Model Relationships and Execution Sequence for “Create” Business Process. 22
Figure 8. Model Relationships and Execution Sequence for “Update” and “Retire” Business Process................ 22
Figure 9. Model 1 Import Data. 24
Figure 10. Model 2 Prepare Background Data. 25
Figure 11. Submodel c2.3 Create Temp Datasets. 26
Figure 12. Model 3 Create New Intersections. 27
Figure 13. Submodel c3.3 Populate Intersections. 29
Figure 14. Create New Legs and Update Intersections 30
Figure 15. Submodel 4.5 Finalize Intersections 32
Figure 16. Model 5 Create New Ramps. 33
Figure 17. Model 7 Update or Retire Intersections. 34
Figure 18. Submodel u3.1 Update Intersection Status. 35
Figure 19. Submodel u3.4 Populate Intersections 37
Figure 20. Model 8 Update Legs and Intersections. 38
Figure 21. Parameters of Script Calculate Intersection Angle. 40
Figure 22. MIRE Toolbar. 4
Figure 23. MIRE Toolbar Solution. 41
Figure 24. Class clsConfiguration 42
Figure 25. MIRE Tool Configuration File. 42
Figure 26. Intersection Attributes. 45
Figure 27. Ramp Attributes. 46
Figure 28. Delete Intersection Button on the MIRE Toolbar. 47
Figure 29. Create Intersection Button on MIRE Toolbar. 48
Figure 30. Export Intersection and Approach Data Button on Mire Toolbar. 49
Figure 31. Export Intersections and Intersection Leg Data. 49
Figure 32. RDE Tool Database Domain Values. 52
Figure 33. RDE Tool Geodatabases. 53
Figure 34. ArcMap Feature Dataset Properties. 53
Figure 35. WSDOT Shapefile Geospatial Data. 58
Figure 36. WSDOT Feature Class Geospatial Data and Tabular Data 58
Figure 37. WSDOT RDE Tool Models 59
Figure 38. Model Relationships and Execution Sequence for WSDOT “Create” Business Process............... 60
Figure 39. Model Relationships and Execution Sequence for WSDOT “Update” Business Process. ... 60
Figure 40. MoDOT RDE Tool Models. 72
Figure 41. Model Relationships and Execution Sequence for MoDOT “Create” Business Process. ... 73
Figure 42. Model Relationships and Execution Sequence for MoDOT “Update” Business Process. ... 73

List of Figures (continued)

Figure 43. Intersection Entity-Relationship Diagram in MIRE Data Model. 81
Figure 44. Intersection Leg Entity-Relationship Diagram in MIRE Data Model. 82
Figure 45. Segment Entity-Relationship Diagram in MIRE Data Model. 83
Figure 45 (Continued). Segment Entity-Relationship Diagram in MIRE Data Model 84
Figure 46. Ramp Entity-Relationship Diagram in MIRE Data Model 85
Figure 47. Interchange Entity-Relationship Diagram in MIRE Data Model. 86
Figure 48. Horizontal Curve Entity-Relationship Diagram in MIRE Data Model. 87
Figure 49. Vertical Grade Entity-Relationship Diagram in MIRE Data Model. 88
Figure 50. Main Entities in Safety Analyst Data Model. 90
Figure 51. Intersection Entity-Relationship Diagram in Safety Analyst Data Model. 91
Figure 52. Intersection Entity-Relationship Diagram in Safety Analyst Data Model. 92
Figure 53. Segment Entity-Relationship Diagram in Safety Analyst Data Model. 93
Figure 54. Ramp Entity-Relationship Diagram in Safety Analyst Data Model 94
List of Tables

Table 1. Categories and Subcategories of MIRE Elements 5
Table 2. MIRE Fundamental Data Elements and MIRE Data Element Number for Non-Local* Paved Roads (3).....6
Table 3. MIRE Fundamental Data Elements and MIRE Data Element Number for Local* Paved Roads (3).o..... 7
Table 4. MIRE Fundamental Data Elements and MIRE Data Element Number for Unpaved* Roads (3). ... 7
Table 5. List of Tables with Defined Domain Values. 17
Table 5. List of Tables with Defined Domain Values (continued). 18
Table 5. List of Tables with Defined Domain Values (continued). 19
Table 6. WSDOT RDE Tool Pilot Implementation Timeline. 57
Table 7. MoDOT RDE Tool Pilot Implementation Timeline. 67
Table 8. MoDOT Input Files Included in Data Integration Review. 68
Table 9. Overview of MoDOT Feature Class SS_PAVEMENT_CURRENT. 68
Table 10. Data Extraction Mapping for SS_PAVEMENT_CURRENT Feature Class. 69
Table 11. List of Local Transportation Agency Input Files Included in Data Integration ReVIEW. ... 69
Table 12. Overview of City of Springfield Feature Class street. 70
Table 13. Data Extraction Mapping for City of Springfield street Feature Class. 70
Table 14. Overview of St. Louis County Feature Class Traffic_Counts. 71
Table 15. Data Extraction Mapping for St. Louis County Traffic_Counts Feature Class 71
Table 16. Generic Asset Node Template. 95
Table 17. Generic Intersection Template. 95
Table 18 Generic Intersection Leg Template. 97
Table 19. Generic Ramp Template. 99
Table 20. Generic Segment Template. 101

List of Abbreviations and Acronyms

AADT

AASHTO

ADT

csv

DOT

FDE

FHWA

GIS

HOV

HSIP

HSM

MAP-21

MIRE

MIS

MoDOT

NIEM

RDETAP

SHSP

TxDOT

VB.NET

VMT

WSDOT

XML

annual average daily traff

American Association of State Highway and Transportation Officials

average daily traffic

comma separated value

Department of Transportation
Fundamental Data Elements

Federal Highway Administration
geographic information system
high-occupancy vehicle

Highway Safety Improvement Program
Highway Safety Manual

Moving Ahead for Progress Act

Model Inventory of Roadway Elements
Management Information System
Missouri Department of Transportation

National Information Exchange Model

Roadway Data Extraction Technical Assistance Program

Strategic Highway Safety Plan
Texas Department of Transportation
Visual Basic .NET

vehicle miles traveled

Washington State Department of Transportation

extensible markup language

1. Introduction

Background

Both the Moving Ahead for Progress in the 21st Century (MAP-21) and the Fixing America’s Surface
Transportation Act (FAST) funding and authorization bills sanctioned continuation of the legacy
Highway Safety Improvement Program (HSIP) as a core federal-aid program. Both legislative enactments
called for advancing the capabilities of states for safety data collection, integration, and analyses to
support a State’s HSIP and Strategic Highway Safety Plan (SHSP). They acknowledged the importance of
using multiple data sources to make effective decisions regarding resource allocation for a State’s safety
program. Further, both enactments underline the need for states to have in place a safety data system
that can be used to conduct analyses and evaluations that support the strategic and performance
based safety goals that are to be inclusive of all public roadways in the State. They also required the
establishment of a subset of Model Inventory of Roadway Elements (MIRE) that would be useful for the
inventory of roadway safety. The MIRE is a listing of roadway and traffic data elements to support safety
management programs and analyses (7).

The Roadway Data Extraction Technical Assistance Program (RDETAP) within the Federal Highway
Administration (FHWA) Office of Safety is intended to assist states to identify, extract, and record MIRE
and other roadway data elements from commonly available existing sources of data, such as video logs,
Google Earth™, Google Street View™, and Bing Maps™ Streetside™.

RDETAP Development

From 2012 to 2013, the FHWA Office of Safety was involved in the MIRE-Management Information
System (MIRE-MIS) project which sought methods to aid states with incorporation of MIRE data into
state safety management practices. The MIRE-MIS had several components, one of which was the
identification and development of various methods of identifying, modifying, and extracting roadway
data elements. This component was known as the “Lead Agency Program.”

The New Hampshire Department of Transportation participated in FHWA's MIRE-MIS Lead Agency
Program. The outcome of the project was a customized tool called NH GIS-Based Tool. The NH
GIS-Based Tool allowed the extraction, storage, and retrieval of roadway data elements for safety
data analyses.

Recognizing the potential value of this tool and its processes to assist other states expansion and
enhancement of their roadway data, the FHWA Office of Safety initiated the RDETAP. The purpose of the
RDETAP was to further refine the capabilities of the NH GIS-Based Tool for processing roadway inventory
data from multiple sources in an ESRI® ArcGIS® environment and attaching non-spatial attribute data
(e.g., AADT and roadway width) to spatial roadway elements (e.g., intersection points and intersection
legs). The data is stored in a geodatabase and can be exported in a variety of desired formats to support
safety analysis. The RDETAP project has resulted in a “genericized” version of the NH GIS-Based Tool,
referred to as the RDE tool. It has been enhanced to include all MIRE Version 1.0 data elements and can
be further expanded to collect non-MIRE data elements. The RDE tool has been pilot tested with the
states of Washington, Missouri, and Texas.

Purpose of the Guide

The goal of the Roadway Data Extraction Technical Assistance Program (RDETAP) is to assist state and
local agencies expand and enhance their roadway data inventories. The RDETAP provides guidance
on how to identify, extract, and reformat critical data from available data sources and incorporate new
value-adding data elements.

The purpose of this guide is to document and explain the steps used in extracting roadway inventory
data from existing data sources to expand and enhance the roadway inventory data available to states
with regard to the Model Inventory of Roadway Elements (MIRE) and other roadway data. Specifically,
the guide provides instructions on how to modify the RDE tool (hereafter referred to as the Roadway
Data Extraction (RDE) tool) that was developed for the New Hampshire Department of Transportation
(DQOT) and subsequently “genericized” to make it useful for other DOTs and local public agencies in
the U.S.

During pilot implementation of the tool as part of the RDETAP, pilot states found that there is benefit
in separating the guide into two documents, one aimed at GIS programmers, and one aimed at users
of the tool. Thus as part of the RDETAP, two guides were developed, one for system programmers and
one for data users. This implementation guide was developed to help state and local agencies take full
advantage of the RDE tool.

Before the RDE tool can be used at a transportation agency there is a need for a significant amount
of programming to adjust geodatabases, templates, and code to work with the agency’s data. This
programmer’s guide is intended to aid with that process, while the separate Users Guide is aimed at
helping a user manipulate the tool once it has been implemented at a transportation agency.
Organization of the Guide

The guide is organized into the following eleven chapters and four appendices:

® The first chapter is this introductory chapter.

= Chapter 2 provides an overview of MIRE data elements, fundamental data elements (FDEs), and
overall hierarchy of data elements in terms of collection priority.

® Chapter 3 provides a description of the RDE tool components and data management process.

= Chapter 4 provides a description of the RDE tool geodatabases, including data models and
templates.

= Chapter 5 provides an overview of RDE tool toolboxes and scripts, and the business processes to
create features, update features, and retire features.

= Chapter 6 provides an introduction to the RDE tool Addin, which consists of the RDE toolbar and
related code.

® Chapter 7 provides general instruction on how to modify spatial templates, tools, and custom
data entry interfaces to aid a transportation agency with the implementation of the RDE tool.

® Chapter 8 is a summary of the pilot implementation of the RDE tool at the Washington State
DOT (WSDOT).

= Chapter 9 is a summary of the pilot implementation of the RDE tool at the Missouri DOT
(MoDOQT).

Chapter 10 provides concluding remarks.

Chapter 11 provides a listing of references used in this guide.

Appendix | provides entity-relationship diagrams of the MIRE data model created for this
project.

Appendix Il provides entity-relationship diagrams of the Safety Analyst data model created for
this project.

Appendix lll provides an overview of the feature class templates that are used by the output
geodatabase in the RDE tool.

Appendix IV provides a copy of the Python script that is used to calculate the intersection angle
in the RDE tool.

2. Model Inventory of Roadway Elements

MIRE is a guideline that provides a listing of roadway features and traffic volume elements important
to safety management, and includes standardized coding for each element. MIRE Version 1.0 guide
includes 202 elements grouped into three categories: roadway segments, roadway alignments, and
roadway junctions. The complete listing of all the elements in the MIRE can be found at the website of
the Federal Highway Administration’s Office of Safety (2). FHWA anticipates issuing MIRE Version 2.0 in
2017 (however, all references to MIRE in this document refer to MIRE Version 1.0).

It is important to note that MIRE data elements are geared towards safety management, though having
these elements could potentially benefit other State DOT business functions. There are additional data
elements that states can and do collect that provide additional benefits. These non-MIRE data elements
can also be incorporated into the RDE Tool.

In summary, MIRE 1.0 provides elements and attributes that are or will be needed when State and local
DOTs make safety management decisions. MIRE can be broken down into categories and subcategories
as shown in Table 1.

Table 1. Categories and Subcategories of MIRE Elements.

MIRE Category MIRE Subcategory

. Roadway Segment Descriptors l.a. Segment Location/Linkage Elements
l.b. Segment Roadway Classification
l.c. Segment Cross Section
.c.1. Surface Descriptors
l.c.2. Lane Descriptors
l.c.3. Shoulder Descriptors
l.c4. Median Descriptors
l.d. Roadside Descriptors
l.e. Other Segment Descriptors
Lf. Segment Traffic Flow Data
l.g. Segment Traffic Operations/Control Data
l.h. Other Supplemental Segment Descriptors

Il. Roadway Alignment Descriptors Il.a. Horizontal Curve Data
IIl.b. Vertical Grade Data

lll. Roadway Junction Descriptors IIl.a. At-Grade Intersection/Junctions

ll.a.1. At-Grade Intersection/Junction General Descriptors

Ill.a.2. At-Grade Intersection/Junction Descriptors (Each Approach)
lIl.b. Interchange and Ramp Descriptors

ll.b.1. General Interchange Descriptors

ll.b.2. Interchange Ramp Descriptors

Fundamental Data Elements

While complete MIRE data is critical for safety, it may not be feasible for States to collect and integrate
all of the MIRE data elements into their HSIP process. The MAP-21 and the FAST Act required FHWA

to identify a subset of the elements in MIRE that should be integrated with crash data to conduct
enhanced safety analyses in support of a State’s HSIP. This subset of MIRE data elements is referred to
as the MIRE Fundamental Data Elements (MIRE-FDE). The MIRE FDE are based on the elements needed
to apply the HSM roadway safety management (Part B) procedures using network screening and
analytical tools.

In March of 2016, FHWA issued a new HSIP regulation. This regulation identified requirements for

state safety data systems that redefined FDEs based on roadway functional class and surface type (3).
Effective April 14, 2016, FHWA defined three different sets of FDEs based on non-local paved roads,

local paved roads, and unpaved roads (Table 2, Table 3, and Table 4). For non-local paved roads, FHWA
defined FDEs for roadway segments, intersections, and interchanges/ramps. For local paved roads and
unpaved roads, FHWA only defined FDEs for roadway segments. According to federal regulations, States
shall incorporate specific quantifiable and measurable anticipated improvements for collection of MIRE
FDEs into their State Traffic Records Strategic Plan update by July 1, 2017, and have access to the FDEs on
all public roads by September 30, 2026 (4).

Table 2. MIRE Fundamental Data Elements and MIRE Data Element Number
for Non-Local* Paved Roads (3).

Roadway Segment Interchange/Ramp

Segment Identifier (12) Unigue Junction Identifier (120) | Unique Interchange Identifier (178)

Route Number (8) Location Identifier for Road 1 Location Identifier for Roadway at
Crossing Point (122) Beginning Ramp Terminal (197)

Route/street Name (9) Location Identifier for Road 2 Location Identifier for Roadway at
Crossing Point (123) Ending Ramp Terminal (201)

Federal Aid/ Route Type (21) Intersection/Junction Ramp Length (187)
Geometry (126)

Rural/Urban Designation (20) Intersection/Junction Traffic Roadway Type at Beginning Ramp
Control (131) Terminal (195)

Surface Type (23) Average Annual Daily Traffic Roadway Type at Ending Ramp Terminal
(79)** (199)

Begin Point Segment Descriptor (10) | Average Annual Daily Traffic Interchange Type (182)
Year (80)**

End Point Segment Descriptor (11) Unique Approach Identifier Ramp Average Annual Daily Traffic (191)
(139)

Segment Length (13) Year of Ramp Average Annual Daily

Traffic (192)

Direction of Inventory (18) Functional Class (19)

Functional Class (19) Type of Governmental Ownership (4)

Median Type (54)

Access Control (22)

One/Two-Way Operations (91)

Number of Through Lanes (31)

Average Annual Daily Traffic (79)

Roadway Segment Interchange/Ramp

Average Annual Daily Traffic Year (80)

Type of Governmental Ownership (4)

* Based on functional classification.
** For each intersecting road.

Table 3. MIRE Fundamental Data Elements and MIRE Data Element Number for Local* Paved Roads (3).

Roadway Segment

Segment Identifier (12)

Functional Class (19)

Surface Type (23)

Type of Governmental Ownership (4)

Number of Through Lanes (31)

Average Annual Daily Traffic (79)

Begin Point Segment Descriptor (10)

End Point Segment Descriptor (11)
Rural/Urban Designation (20)

* Based on functional classification.

Table 4. MIRE Fundamental Data Elements and MIRE Data Element Number for Unpaved* Roads (3).

Roadway Segment

Segment Identifier (12)

Functional Class (19)

Type of Governmental Ownership (4)

Begin Point Segment Descriptor (10)

End Point Segment Descriptor (11)

* Based on functional classification.

MIRE Data Model

MIRE is a recommended listing and associated data dictionary of roadway inventory and traffic elements
that are critical to the safety management of highways. As such, it provides the building blocks for a
data model that can provide the foundation for a roadway inventory implementation based on MIRE.
The following provides a description of a MIRE data model that was developed as part of the pilot MIRE-
MIS implementation.

The MIRE data model depicts the data elements described in the MIRE Version 1.0 guideline and
translates them to entities and attributes. The data model consists of seven main entities, which

are intersection, intersection leg, segment, ramp, interchange, horizontal curve, and vertical grade.
Appendix | provides entity-relationship diagrams of these and related entities. In addition to the main
entities, the MIRE data model also provides numerous look-up tables that store the domain values of
certain attributes in the main entities.

For the MIRE-MIS pilot implementation, the research team focused on the entities intersection,
intersection leg, segment, and ramp. These entities and look-up tables were used to develop the GIS
templates for the RDE tool.

3. Description of RDE Tool and Data Management Process

The RDE tool processes roadway inventory data from multiple sources in an ESRI ArcGIS environment
and attaches non-spatial attribute data (e.g., AADT and roadway width) to spatial roadway elements
(e.g., intersection points and intersection legs). The data is stored in a geodatabase and can be exported
in a variety of desired formats to support a range of safety analysis tools.

RDE Tool Components

The RDE tool consists of three main components that are briefly described below.

® RDE Tool Geodatabases

InputData.gdb. This geodatabase is used by the RDE tool to store all data that is input into
the process. When user run 1. Import Data model, the model import user’s data into this
database and make it available to other models.

IntermediateData.gdb. This geodatabase is used by the RDE tool to temporary store data
during processing.

InternalData.gdb. This geodatabase is used by the RDE tool to store internal data such as
output templates.

MIREProject.gdb. This geodatabase is used by the RDE tool to store the process output,
including the feature classes Intersections, IntersectionLeg, and Ramp.

UpdateFeature.gdb. This geodatabase is used by the RDE tool to temporary store data
during the update feature process.

= RDE Tool Toolboxes and Scripts

MIRE_3.tbx. This ESRI toolbox contains the main models that form the RDE tool. These
models can be executed by right-clicking the model and selecting “open”.

MIRE_support.tbx. This ESRI toolbox contains supporting models and scripts that are used
by the main models in toolbox MIRE_3.tbx. These models should not be executed directly.

MIRE_update.tbx. This ESRI toolbox contains models that can be used to update existing
roadway data and roadway features.

IntsectingAngle.py. The RDE tool uses this Python script to calculate the smallest angle
between two intersecting roadways.

= RDE Tool Addin

MIRE Toolbar. The MIRE Toolbar is an ESRI plug-in that provides buttons for a user to
execute code and models within the ESRI ArcMap program.

XML configuration file. The XML configuration file provides basic configuration settings,
such as field names, the path for the toolboxes, and the path to exported files. The XML
configuration file must be modified before the RDE tool will work, as described below.

RDE Tool Data Management Process

The RDE tool data management process involves the creation of several geodatabases including the
output geodatabase MIREProject.gdb where the RDE tool output data is stored. To start, a user should
combine all datasets needed for the data extraction effort into one geodatabase called InputData.gdb.
However, this is not a required step and the RDE tool could be modified accordingly. Running the model
1 Import Data selects the datasets of interest and moves relevant data to the geodatabase InternalData.
gdb. Processing the data with model 2 Prepare Background Data and subsequent models stores data in
the geodatabase IntermediateData.gdb. When the tool finishes processing the data, all output datasets
are moved to geodatabase MIREProject.gdb. Figure 1 provides a flow chart of the RDE tool data
management process.

InputData.gdb

¥

InternalData.gdb

IntermediateData.gdb

MIREProject.gdb

Figure 1. Data Management Process.

System Requirements

The researchers tested and installed the tool on a computer with the following specification, which are
the minimum requirements for the use of the RDE tool:

Processor: Intel dual core or similar.

RAM: 2 GB.

Disk space: 3 GB.

Operating system: Windows 7.

ESRI Software.

ArcMap version 9.3 or later (current compatible version is 10.4.1).
ArcCatalog version 9.3 or later (current compatible version is 10.4.1).

Data storage: file geodatabase version 9.3 or later or ESRI ArcSDE (personal geodatabase not
supported).

Input data: ArcGIS shapefiles, text, personal geodatabase, file geodatabase, ArcSDE, Oracle, SQL
Server database (Oracle Spatial and SQL Server Spatial are not supported).

Access to C Drive.

The following chapters provide an in-depth description of all RDE tool components. These descriptions
are based on the “generic” version of the tool, which is a term the authors use to distinguish the RDE
tool that should be used at the beginning of a RDE tool implementation project from a state-specific
version of the RDE tool that was the result of an implementation project. However, in order for the tool
to work, certain sample datasets must be available. Where needed to illustrate the functionality of the
RDE tool, and with permission of the Washington State Department of Transportation (WSDOT), the
authors used sample data from the WSDOT implementation effort.

4. RDE Tool Geodatabases

InputData Geodatabase

The InputData geodatabase serves as a temporary database where the RDE tool gathers and temporarily
stores all input datasets that are needed for the tool to work in one place. These are the datasets that
will be used to automatically extract data and populate feature classes in the output geodatabase.
Although this task is not necessary for the tool to work it makes it easier for a user to see what dataset
are included in the data processing, and for what purpose. As an example, Figure 2 shows the InputData
geodatabase in use at WSDOT.

= 3 InputData.gdb
(>~ FunctionalClass_SR
() LocalAgencyPublicRoads_Lines_2013
) RoadwaylIntersections_2013
(=] RW_AccessControl2014
() RW_Lanes2014
(=) RW_LegalSpeedLimits2014
) RW_Median2014
=) RW_UrbanRural2014
= SR24kLRSRamp_20131231
(%) Traffic_Counts
(&) WA_County_Bndys
(=] WAPR

Figure 2. Feature Classes in InputData Geodatabase.

The icon in front of each feature class indicates the type of features stored in that feature class, as follows:

1 Point feature.
(=] Line feature.

& Polygon feature.

The feature classes listed in Figure 2 provide the following data elements used by the RDE tool:

FunctionalClass_SR: Provides the federal functional class code field for all state routes.

LocalAgencyPublicRoads_Lines_2013: Contains the geospatial features of local public roads. For
the RDE tool to work, features must have a value in the field F_System.

Roadwayintersections_2013: Contains intersection features that lack MIRE data. Intersection
features should have an AgencyID, which is the intersection ID assigned by the DOT.

RW_AccessControl2014: Contains the access control type code for each roadway.

RW_Lanes2014: Contains the number of lanes for each roadway. The feature class should have a
field for the number of lanes in decreasing and increasing direction.

RW_LegalSpeedLimits2014: Contains the legal speed limit for all roadway segments.

RW_Median2014: Contains a median barrier type code for each roadway.

®

= RW_UrbanRural2014: Contains an urban/rural code field for each roadway.

® SR24kLRSRamp_20131231: Contains geospatial features of all ramps in the state.
= Traffic_Counts: Contains AADT values and AADT dates for roadways.

= WA_County_Bndys: Contains the Washington State county boundaries.

= WAPR: Contains Washington State public road features and related information.

IntermediateData Geodatabase

The IntermediateData geodatabase is used to store temporary data during data processing and all
feature classes in IntermedidateData are temporary datasets. The geodatabase contains 2 feature
datasets, Intermediate and Temp, and one table intersection_tbl (Figure 3.)

a InputData.gdb
= IntermediateData.gdb
= 7 Intermediate
E] _Intersection
[%] Allintersection
AllIntersectionLeg
[**] Intersection
Roadwaylnventory
= 2H Temp
E] AzzetModes
Leg2h
Leg3l
E] Leg3l_Cent
Legd0
Legb
m Legd_Cent
[Model
[Node2
[*7] Mode2s
[Node6
intersection_tbl

Figure 3. IntermediateData Geodatabase.

The Intermediate feature dataset contains feature classes that are reused by several processes while the
Temp feature dataset contains short-term feature classes. Intermediate and Temp feature datasets have
the same coordinate system of the output dataset, which must be specified ahead of data processing.
Intersection_tbl is used to store the calculated value of the intersection angle before it is moved to

the final location in the Intersection feature class in the MIREProject geodatabase. To learn more about
the use and purpose of each intermediate feature class, please review the description of the RDE tool
models and submodels in the next chapter, which illustrate when each dataset is being used by the
RDE tool.

InternalData Geodatabase

The InternalData geodatabase is used to provide templates for the feature classes in the output
geodatabase MIREProject.gdb and several datasets that are slight transformations of the input datasets
(Figure 4). Templates are grouped into the feature dataset Templates that contains four feature class
templates that are used to create the final output feature classes. Each template provides a listing of
fields, data types for each field, indices, coordinate system definitions, subtypes as needed, resolution
and tolerances, and feature extents.

=W InternalData.gdb
= B Templates

[%] ASSET_MODE_Template
[~=] INTSECT_LEG_Template
[%] INTSECT_Template
IE RAMP_Template
[~] 5GMMNT_Template

IE] AccessControl

[~ AllRoadway

[E CountyBoundary

IE DOT_Intersection

IE FunctionalClass_SR

[~ LegalSpeedLimit

[LocalPublicRoad

IE RoadMedian

[~ RoadwayLanes

IE TrafficCount

IE UrbanRural_Designation

Figure 4. InternalData Geodatabase.

A description of the feature class templates listed in Figure 4, and how the RDE tool makes use of them,
follows. Appendix lll provides a complete view of the field names and data types for each template.
Note that most templates contain fields that are specific to the requirements of Safety Analyst software.
Transportation agencies that use different safety analysis software would simply disregard (or delete)
these fields.

m ASSET_NODE_Template: This template is used to create the AssetNode dataset which includes all
nodes created by RDE tool.

® INTSECT Template: This template contains all data elements depicting an intersection. It
meets the requirements of Safety Analyst and the MIRE guideline by combining fields of both
standards. The first 29 fields (in mixed case) originate from Safety Analyst and the remaining 18
fields (in all caps) originate from the MIRE guideline. The last two fields are additional fields that
are required by RDE tool.

B INTSECT_Leg_Template: This template contains all data elements depicting an intersection
leg. It meets the requirements of Safety Analyst and the MIRE guideline for intersection legs
by combining fields of both standards. The first 15 fields (in mixed case) originate from Safety
Analyst and the remaining 43 fields (in all caps) originate from the MIRE guideline. The last field
is an additional fields that is required by RDE tool.

= RAMP_Template: This template contains all data elements depicting a ramp. It meets the
requirements of Safety Analyst and the MIRE guideline for ramps by combining fields of both
standards. The first 25 fields (in mixed case) originate from Safety Analyst and the remaining
20 fields (in all caps) originate from the MIRE guideline. The last field is an additional fields that is
required by RDE tool.

= SGMNT_Template: This template contains all data elements depicting a segment. It meets the
requirements of Safety Analyst and the MIRE guideline for segments by combining fields of both
standards. The first 41 fields (in mixed case) originate from Safety Analyst and the remaining
96 fields (in all caps) originate from the MIRE guideline. The last field was added to the template
as required by the RDE tool. The researchers included all fields from Safety Analyst in this
template but not all fields of the MIRE template, because some of the MIRE elements duplicated
Safety Analyst data elements.

The remaining 11 feature classes in the geodatabase InternalData are input datasets that are slight
transformations of the original input datasets stored in the geodatabase InputData so that they can be
processed by the RDE tool. For example, some of the input dataset names are changed to make them
more meaningful.

® AccessControl: This is the imported version of the access control dataset provided by the agency
(RW_AccessControl2014).

® AllRoadway: This is the imported version of the dataset that contains all public and private roads
provided by the agency (WAPR).

® CountyBoundary: This is the imported version of the county boundary dataset provided by the
agency (WA_County_Bndlys).

= DOT_Intersection: This is the imported version of the intersection dataset provided by the agency
(Roadwayintersections_2013).

" FunctionalClass_SR: This is the imported version of the functional class dataset provided by the
agency (FunctionalClass_SR).

® | egalSpeedLimit: This is the imported version of the legal speed limit dataset provided by the
agency (RW_LegalSpeedLimits2014).

® [ocalPublicRoad: This is the imported version of the local public road dataset provided by the
agency (LocalAgencyPublicRoads_Lines_2013).

® RoadMedian: This is the imported version of the road median dataset provided by the agency
(RW_Median2014).

® Roadwaylanes: This is the imported version of the roadway lanes dataset provided by the
agency (RW_Lanes2014).

® TrafficCount: This is the imported version of the traffic count dataset provided by the agency
(Traffic_Counts).

® UrbanRural_Designation: This is the imported version of the urban/rural dataset provided by the
agency (RW_UrbanRural2014).

In addition to the templates and input datasets, the IntermediateData.gdb geodatabase provides a range
of valid values, or domains, for a number of tables. Figure 5 provides a listing of the domain names and
description that are stored in the geodatabase, along with an indication of whether they are currently
used by the RDE tool. Domains that are currently not used by the RDE tool are included to facilitate
future expansion of the RDE tool.

Table 5. List of Tables with Defined Domain Values.

Domain Name Domain Description In Use

accessControl

Highway access control type

Segment

APR_PED_SGN_SPCL_FEAT_TYPE

Approach pedestrian signalization special
feature type

IntersectionlLeg

APR_RT_TRN_ON_RED_PRH_TYPE

Approach right-turn-on-red type

IntersectionlLeg

APRCH_CRSWLK_TYPE

Approach crosswalk type

IntersectionlLeg

APRCH_DRCT_FLOW_TYPE

Approach directional flow type

IntersectionlLeg

APRCH_LT_RT_TURN_PRHB_TYPE

Approach left and right turn prohibition type

IntersectionlLeg

APRCH_LT_TURN_LN_TYPE

Approach left turn lane type

IntersectionlLeg

APRCH_LT_TURN_PROT_TYPE

Approach left turn protection type

IntersectionlLeg

APRCH_MDN_TYPE

Approach median type

IntersectionlLeg

APRCH_MODE

Approach transportation mode

IntersectionlLeg

APRCH_PED_SGNLN_TYPE

Approach pedestrian signalization type

IntersectionlLeg

APRCH_RT_TURN_CHNLZ_TYPE

Approach right turn channelization type

IntersectionlLeg

turn lane type

APRCH_TRFC_CTRL_TYPE Approach traffic control type IntersectionlLeg
AUX_LN_TYPE Auxiliary lane type Segment
CIR_IN_AP_EX_RT_TN_LN_TYPE Circular intersection approach exclusive right IntersectionLeg

CIRC_INTS_BICY_FCLTY_TYPE

Circular intersection bicycle facility type

Intersection

CIRC_INTS_PED_FCLTY_TYPE Circular intersection pedestrian facility type | IntersectionLeg
CNTRLN_RMBL_STRP_TYPE Center lane rumble strip type Segment
CNCD_RTE_TYPE Coinciding route type Segment
CURB_PRSC_TYPE Curb presence type Segment
CURB_TYPE Curb type Segment
discontinuity Discontinuous roadway segment indicator Segment
EXC_RT_TRN_LN_TRF_CTR_TYPE Exclusive right-turn lane traffic control type | IntersectionlLeg
FEDRL_AID_RTE_TYPE Federal-aid route type Segment
FUNC_CLASS_TYPE Functional class type Ramp
GOVT_OWNR_TYPE Governmental ownership type Ramp

Table 5. List of Tables with Defined Domain Values (continued).

Domain Name

Domain Description

In Use

Intersection, Segment,

growthSource Growth source code

Ramp
HOV_LN_TYPE High occupancy vehicle lane type Segment
interchangelnfluence interchangelnfluence Segment

intersectionTypel

Intersection type 1

Intersection

intersectionType2

Intersection type 2

Intersection

INTSECT_GMTRY_TYPE

Intersection geometry type

Intersection

INTSECT_TRFC_CTRL_TYPE

Intersection traffic control type

Intersection

INTSECT_TYPE

Intersection type

Intersection

invalidintersection Invalid intersection code Intersection
invalidRamp Invalid ramp code Ramp
invalidSegment Invalid segment code Segment

leftTurnPhasing Left turn phasing code IntersectionlLeg
legDirection Leg direction code IntersectionLeg
legMedianType Leg median type IntersectionLeg
legType Leg type IntersectionlLeg
majorRoadDirection Major road direction Intersection
MDN_BARR_TYPE Median barrier type Segment
MDN_CRSOVR_LN_TYPE Median crossover lane type Segment
medianTypel Median type 1 Segment
medianType2 Median type 2 Segment
offsetintersection Offset intersection code Intersection
ON_ST_PRKG_PRSC_TYPE On-street parking presence type Segment
ON_ST_PRKG_TYPE On-street parking type Segment
operationWay Operation way code Segment
RAMP_METER_TYPE Ramp meter type Ramp
RAMP_TRMN_RDWY_FEAT_TYPE Ramp terminal roadway feature type Ramp
RAMP_TRMN_RDWY_TYPE Ramp terminal roadway type Ramp
RAMP_TRMN_RLTV_MNLN_TYPE Ramp terminal relative mainlane type Ramp
rampConfiguration Ramp configuration code Ramp
rampCrossroadConnection Ramp crossroad connection code Ramp
rampFreewayConnection Ramp freeway connection code Ramp
ramplype Ramp type Ramp
RDWAY_LTG_TYPE Roadway lighting type Segment
roadwayClass] Roadway class code 1 Segment

Table 5. List of Tables with Defined Domain Values (continued).

Domain Name Domain Description
roadwayClass2 Roadway class code 2 Segment
roadwayClass3 Roadway class code 3 Segment
RTE_SIGN_QLFY_TYPE Route signing qualifier type Segment
RTE_SIGN_TYPE Route signing type Segment
RURL_URB_DSGNT Rural-urban designation Isnggzizt;onLeg,
SDWALK_TYPE Sidewalk type Segment
SGNL_PROG_TYPE Signal progression type IntersectionlLeg
SGNLN_TYPE Signalization type Intersection
SHLDR_RMBL_STRP_TYPE Shoulder rumble strip type Segment
SHLDR_TYPE Shoulder type Segment
SRFC_TYPE Surface type Segment
STATE_FIPS_CODE i(t)a;g federal information processing standard Not in Use
Status Feature status code Intersection
terrain Terrain code Segment
TOLL_FCLTY_TYPE Toll facility type Segment
trafficControl Traffic control 1 Intersection
travelDirection Traffic control 2 Segment
TRIBAL_RESERVATION_FIPS_CODE ;rr'gig‘jfneévjtgggaff ddfgfj';”format'on Not in use
turnProhibitions Turn prohibitions code IntersectionlLeg
YES_NO Yes-no code :2:32:3:2:&9, Ramp

MIREProject Geodatabase

The MIREProject geodatabase contains the output feature classes created by the RDE tool. After
executing all models in RDE tool, the MIREProject geodatabase should contain 5 feature classes:
AssetNode, Intersection, IntersectionLeg, Ramp, and Segment (Figure 5). The coordinate system of these
feature classes is determined by the specific coordinate system used by each state.

= 8 MIREProject.gdb
[%7] AssetNode
[7] Intersection
[~ Intersectionleg
[~ Ramp
[~ Segment

Figure 5. MIREProject Feature Classes.

The following provides a description of the feature classes in MIREProject.

® AssetNode: This feature class contains all possible intersecting points between two roadways in
the input roadway dataset. Note that not all of these points have corresponding intersections on
the ground.

= |ntersection: This feature class contains all intersection features provided by the state DOT. The
feature class uses the generic intersection template INTSECT_Template.

® ntersectionLeg: This feature class contains all intersection leg features generated by the RDE tool.
The feature class uses the generic intersection leg template INTSECT_LEG_Template.

= Ramp: This feature class contains all ramp geometry provided by the state DOT. The feature class
uses the generic ramp template RAMP_Template.

® Segment: This feature class contains all segment geometry provided by the state DOT. It uses the
generic segment template SGMNT_Template.

UpdateFeature Geodatabase

The Updatefeature geodatabase is used to store temporary datasets that are created when a user runs
model 6 Prepare Update Data, 7 Update or Retire Intersections, or 8 Update Legs and Intersections. During
the updating of the features, the RDE tool performs many alteration to the input dataset. Instead

of altering the original input datasets, the RDE tool creates copies of the input datasets and make
modification on the copies. At each modification stage, the RDE tool creates a separate copy of the data.
Once the models complete successfully, the final output is copied into appropriate feature classes of the
MIREProject geodatabase, and the temporary feature classes in UpdateFeature are deleted.

5. RDE Tool Toolboxes and Scripts

The RDE tool contains three toolboxes that can produce datasets formatted for use in Safety Analyst or
other types of safety analysis tools, using a series of ArcGIS models:

= MIRE_3
= MIRE_support
= MIRE_update

The RDE tool models are capable of preparing datasets for intersections, intersection legs, segments,
and ramps. Using the models, users can prepare datasets with large number of intersections,
intersection legs, segments, or ramps in just one session. The models gather data from as many sources
as needed, reformat the data as needed, calculate certain new data fields, and attach the data to the
output datasets.

Users of the RDE tool only need to execute models in the toolbox MIRE MIRE_3, MIRE_support and MIRE_
update contain models that are executed by models in MIRE_3. Figure 6 shows the eight models that are
included in the MIRE_3 toolbox.

= & MIRE_3 thx
@ 1 Import Data
5’“ 2 Prepare Background Data
P9 3 Create New Intersections
&= 4 Create New Legs and Update Intersections
5’9 5 Create MNew Ramps
&9 6 Prepare Update Data
:Dﬂ 7 Update or Retire Intersections
3@ 8 Update Legs and Intersections

Figure 6. MIRE Model Geodatabase.

The MIRE_3 toolbox supports three business processes:

1. Creating new features (intersections, intersection legs, segments, and ramps) that are
compatible with safety analysis software, and populating the features with available data.

2. Updating a dataset of features (intersection, intersection legs, segments, and ramps) once
source datasets are updated or modified.

3. Retiring intersection features if an intersection does no longer exist in the field, but the data
manager wants to retain the current intersection and intersection leg data.

Models one through five support the creation of new features, while models six through 8 support
the updating of features and the retiring of features. Figure 7 and Figure 8 provide an overview of the
general workflow to execute the models in MIRE_3 to create, update, or retire features.

1 Import Data

2 Prepare
Background
Data

3 Create New
Irtersections

4 Create New
Legs and
Lipdate
Intersections

5 Create Mew
amps

c2.1 Create
waylnve
ntory

c3.1 Create 3.2 Prepare
Intersections Intersactions

B
B

c4.1Create cA2Find
Mew Legs Divided Legs

¢d.3 Fopulate

€45 Finalize
Legs Intersactions 1

Figure 7. Model Relationships and Execution Sequence for “Create” Business Process.

& Prapare
Update Data

7 Update ar
Retire
Intersections

g Update
Legs and
Intersections

djc nor
Road

w42 Find

Divided Legs

u4.G Finalize

Intersections

r,

Figure 8. Model Relationships and Execution Sequence for “Update” and “Retire”

Business Process.

Create Business Process

To create new features for safety analysis, users should execute the first five models in the MIRE_3
toolbox. The models serve the following purpose:

®] Import Data: Import input datasets from the transportation agency’s geodatabase into the
local geodatabase.

® 2 Prepare Background Data: Create the Roadwayinventory and AssetNode datasets, which are
needed for subsequent steps.

® 3 (Create New Intersections: Create the Intersection dataset from the provided input datasets.
Alternatively, the tool can be configured to use an existing intersection dataset and use its
geospatial intersection information, instead of creating new intersection features. However, this
might create problems with the creation of new intersection legs if the existing intersection
features do not coincide with the geospatial roadway data provided.

® 4 Create New Legs and Update Intersections: Create the IntersectionLeg dataset based on input
data and geospatial roadway line work.

m 5 Create New Ramps: Create and populate the Ramp dataset using input datasets.

A detailed description of the main functions within each model follow below.

Model 1 Import Data

Figure 9 provides an overview of the model’s functions and relationships as seen in model builder.

The main purpose of this model is to bring all input datasets from various data sources into one single
geodatabase. As shown, the model uses the ArcGlIS Feature Class to Feature Class tool to import the
transportation agency’s datasets into the RDE tools InternalData geodatabase. The imported datasets can
then be used by subsequent models. 1 Import Data does not execute any submodels.

Note that it is important to ensure that all datasets that will be imported use the same coordinate
system. In addition, each dataset has fields that are required for the model to execute. These fields are
dependent on required fields in other subsequent models, but can be adjusted as needed. The “P”
adjacent to a model input indicates that the input is a parameter that can be changed by the user on the
interface when executing the model.

Figure 9. Model 1 Import Data.

Model 2 Prepare Background Data

This model creates background datasets that are used by subsequent models in order to create
intersections and intersection legs. Due to the complexity of the model, it is split into three submodels
that are stored in the MIRE_support toolbox: c2.7 Create Roadwaylnventory, c2.2 Create Asset Nodes, and
c2.3Create Temp Datasets. Figure 10 provides an overview of the model and submodel relationships.
Note that Figure 10 includes both solid lines and dashed lines between model components. Solid lines
indicate that data or information is being transferred, while dashed lines indicate that a componentis a
precondition to a function, meaning that it has to complete before the next function can execute.

24

Figure 10. Model 2 Prepare Background Data.

Submodel c2.1 Create Roadway Inventory

This submodel uses geometry from the roadway dataset and attribute data from various datasets to
create the Roadwayinventory feature class. The submodel is too large and complex to show in this guide,
therefore programmers are advised to review the model in ArcCatalog using ArcGIS ModelBuilder.

The model gathers some data that are needed to populate the Intersection and IntersectionLeg feature
classes and to determine the major versus minor road at an intersection. Attribute data used to
determine major versus minor road include the roadway’s Federal Functional Class, F_System code,
route type, AADT, State route number, and serveral others. Determination of major versus minor
roadway should be adjusted based on the data available at the transportation agency.

Submodel c2.2 Create Asset Nodes

This submodel creates the AssetNode dataset which contains all possible intersecting points between
roads, based on the transportation agency’s roadway network data. The submodel is too large and
complex to show in this guide, therefore programmers are advised to review the model in ArcCatalog
using ArcGIS ModelBuilder.

The submodel automatically removes spatially duplicate points and removes points that are too close to
each other, since these points are unlikely to have corresponding intersections in the field. The default
minimum distance between nodes is set to 10 feet but can be adjusted as needed. The RDE tool uses
asset nodes to create intersection features (if enabled) and to create intersection legs that are connected
precisely to each intersection.

Submodel c2.3 Create Temp Datasets

This submodel creates temporary datasets that are needed to execute model 3 Create New Intersections
and model 4 Create New Legs and Update Intersections. The temporary datasets are created using
intermediate data and the templates INTSECT_Template and INTSECT_LEG_Template. Figure 11 provides
an overview of the submodel.

{
i

Create Feature
Class [)
Create Feature:

(o

Figure 11. Submodel c2.3 Create Temp Datasets.

Model 3 Create New Intersections

This model uses intersection features provided by the transportation agency and combines the data
with several input datasets to create the final output Intersection dataset. Due to the complexity of

the model it is split into three submodels that are stored in the MIRE_support toolbox: ¢3.1 Create
Intersections, c3.2 Prepare Intersections, and c3.3 Populate Intersections. Figure 12 provides an overview of

the model and submodel relationships.

|

L}

c3.2 Prepare ’

s |
Intersections

Figure 12. Model 3 Create New Intersections.

|

LY

As shown in Figure 12, the model counts the number of intersection features of the DOT_Intersection
feature class that was created in an earlier step based on various intersection datasets provided by the
transportation agency. If DOT_Intersection contains any intersection features, the model will execute,
otherwise it will stop. The output of the model is the Intersection feature class populated with attribute
data from the input datasets.

Submodel c3.1 Create Intersections

This submodel scans all nodes in the AssetNode dataset and selects the nodes that are closest to the
intersection features provided by the transportation agency’s dataset. Nodes in the AssetNode dataset
are intersecting points between two roadways, so not all of these nodes represent actual intersections
in the field. A user can specify the maximum distance between a node and a nearby intersection
parameter before executing the model, the default value is 30 feet. If a node does not have any nearby
intersection, it will not be selected. After selecting nodes with nearby intersections, the tool imports
data from the Roadwayinventory dataset to populate the Intersection dataset. As such it must find
roadway features in the vicinity of each node. The distance threshold between a node and a roadway
can be set in the “Maximum distance between roadway and Node” parameter, the default value is

10 feet.

Note that this model uses certain attribute data in the Roadwaylinventory dataset to determine major
versus minor roads at each intersection. Since states use different roadway attributes to determine major
and minor roadways, including AADT, route type, and federal highway classification, it is important

to review the code and ensure that it executes correctly. The submodel is too large and complex to

show in this guide, therefore programmers are advised to review the model in ArcCatalog using ArcGIS
ModelBuilder.

Submodel ¢3.2 Prepare Intersections

This submodel attempts to find offset intersections and measure the actual offset distance for each
intersection, which is the distance between the centerlines of the intersecting legs at an intersection. If
the offset distance is greater than zero, the intersection is identified as an offset intersection. Separate
minimums can be specified for urban and rural areas at which an intersection is considered an offset
intersection, before executing the submodel. The default value for urban areas is 50 feet and for rural
areas 100 feet. The submodel is too large and complex to show in this guide, therefore programmers are
advised to review the model in ArcCatalog using ArcGIS ModelBuilder.

Submodel 3.3 Populate Intersections

This submodel combines intersection features provided by the transportation agency, attribute data
from the previous submodels, and the RDE tool templates to create the Intersection dataset. Once
created, the submodel copies the Intersection dataset to the MIREProject geodatabase. Figure 13 provides
an overview of the submodel and relationships.

Figure 13. Submodel c3.3 Populate Intersections.

Model 4 Create New Legs and Update Intersections

This model creates new intersection legs around each intersection created by model 3 Create New
Intersections and populates these legs with data from input datasets. Due to the complexity of the
model, it is split into five submodels that are stored in the MIRE_support toolbox: 4.7 Create New
Legs, c4.2 Find Divided Legs, c4.3 Populate Legs, c4.4 Finalize Legs, and c4.5 Finalize Intersections. Figure 14
provides an overview of the model’s functions and relationships as seen in model builder.

M_ZFI-:I

4.
c4.3 Populate
Legs

i @D
(cisrrae | '

Figure 14. Create New Legs and Update Intersections.

The model first counts the number of new intersection points that are available. If there is at least
one intersection, the model will proceed to create legs, otherwise the model will stop. The following
provides a description of the purpose and process of each submodel shown in Figure 14. With the
exception of submodel c4.5 Finalize Intersections, all submodels are too large and complex to show

in this guide, therefore programmers are advised to review the models in ArcCatalog using ArcGIS
ModelBuilder.

Submodel c4.1 Create New Legs

This submodel creates a 50 feet buffer around each asset node, which determines the length of the
intersection legs. The buffer length can be changed as a model parameter before executing the model.

The submodel intersects the buffer with the Roadwaylnventory feature class to create a set of potential
or temporary intersection legs. The submodel then selects intersection legs that are at least 50 feet long
and less than four feet away from any intersection, which become the permanent or final intersection
legs. The model adds the field Leg/D to all permanent legs and sets the Leg/D value equal to the value

in the field OBJECTID. The submodel then intersects the intersection legs with the Roadwayinventory
feature class to get attribute data such route ID, federal functional class, route unique ID, route type, and
any other attributes that are needed to populate intersection legs.

Submodel c4.2 Find Divided Legs

This submodel applies when a transportation agency needs to identify intersection legs on divided
highways. A requirement for the submodel to work is that the Roadwayinventory dataset has information
to distinguish a divided highway from an undivided highway. The submodel spatially joins intersection
legs with the Roadwaylnventory feature class to determine if a leg was created from a divided highway or
not. If the leg was created from a divided highway feature, the leg is considered a divided highway leg.

Submodel c4.3 Populate Legs

Depending on the available input datasets, the submodel spatially joins intersection leg features with
input datasets such as road median, number of lanes, traffic count, speed limit, access control, and
similar geospatial data. As a result, the submodel populates the intersection leg fields with data from the
spatial joins.

Submodel c4.4 Finalize Legs

This submodel merges all intersection leg features created in previous steps with the intersection leg
template to create the IntersectionLeg feature class. The submodel also spatially joins the intersection
legs with the urban/rural dataset to determine if a leg is in an urban or rural area. The submodel then
copies the IntersectionLeg feature class to the final location, i.e., the MIREProject geodatabase.

Submodel c4.5 Finalize Intersections

This submodel calculate the intersection angle value, which is the smallest angle between any two legs
at an intersection. This angle can only be calculated after the legs have been crated. The submodel
resets the field IsNew to “No” because at this point all intersections have been updated and are no
longer considered new intersections. The model also extracts the agencyID from the input data and
copies the value from NodelD into the field intersectionID. The submodel then merges the intersection
features with the intersection template (INTSECT_Template) to create the final Intersections feature class,
and copies the feature class to the final location, i.e. the MIREProject geodatabase. Figure 15 provides an
overview of the submodel’s functions and relationships as seen in model builder.

Figure 15. Submodel c4.5 Finalize Intersections.

Model 5 Create New Ramps

This model merges the ramp template with the ramp input dataset from transportation agency to create
the feature class Ramp. The model also calculates the length of the ramp feature and sets the value of
the field Verified to “No.” Figure 16 provides an overview of the model’s functions and relationships as
seen in model builder. Model 5 Create New Ramps does not execute any submodels.

2 Calculate
ramplLength

2 Calculate
Venfied

—

3. Delete Field

R ——

Figure 16. Model 5 Create New Ramps.

Update Features Business Process

To update existing features for safety analysis when new data becomes available in the source datasets,
the last three models in the MIRE_3 toolbox should be executed. When updating features, these models
serve the following purpose:

® 6 Prepare Update Data: This model creates several temporary datasets necessary for subsequence
models.

® 7 Update or Retire Intersections: This model updates attribute values and can mark certain
intersections as “Retired.”

= 8 Update Legs and Intersections: This model creates new intersection legs for newly created
intersections and calculates certain values such as intersection angle.

A detailed description of the main functions within each model follow below.

Model 6 Prepare Update Data

Before executing a model, ArcGIS needs to validate the model. The validation process requires a number
of temporary datasets that are used by all submodels. Model 6 Prepare Update Data creates all temporary
datasets that are needed to validate model 7 Updated or Retire Intersections and model 8 Update Legs and
Intersections.

The model is too large and complex to show in this guide, therefore programmers are advised to review
the models in ArcCatalog using ArcGIS ModelBuilder. 6 Prepare Update Data does not execute any
submodels.

Model 7 Update or Retire Intersections

When a user intends to retire intersections by removing the underlying nodes, model 7 will update the
intersection status to “Retired.” If a user deletes intersections, it is not required to execute model 6, 7, or
8. Similarly, if a user changes attribute data of intersections or intersection legs, model 6, 7, and 8 would
not need to be executed. However, execution of these models is mandatory when a user creates a new
intersection using the RDE tool toolbar. When new intersections are added to the intersection dataset
using this procedure, most of the intersection attributes are missing. Executing model 7 Update or Retire
Intersections creates a set consisting of only new intersections (field IsNew = "Yes”) and populates these
new intersections the same way Model 3 does.

Due to the complexity of the model, it is split into four submodels that are stored in the MIRE_update
toolbox: u3.7 Update Intersection Status, u3.2 Find Major Minor Road, u3.3 Find Offset Intersection, u3.4
Populate Intersections. Figure 17 provides an overview of the model and submodel relationships.

Figure 17. Model 7 Update or Retire Intersections.

Submodel u3.1 Update Intersection Status

This submodel looks creates a set of intersections that do not have an underlying asset node. For all
intersection features in this set the model will update the Status field to “Retired.” Figure 18 provides an
overview of the submodel.

Figure 18. Submodel u3.1 Update Intersection Status.

Submodel u3.2 Find Major Minor Road

This submodel finds the nearest roadways for each new intersection. Each intersection feature usually
has at least two nearby roadways. The submodel uses several attributes of the nearest roadways to
determine which road is the major and which is the minor road. These attributes should be adjusted
based on available data, and different states use different attributes to determine major/minor roads.
Attributes currently used include route type, federal functional class, route ID, F_System, etc. The
model updates only new intersections (IsNew = “Yes.”) The submodel is too large and complex to show
in this guide, therefore programmers are advised to review the model in ArcCatalog using ArcGIS
ModelBuilder.

Submodel u3.3 Find Offset Intersection

This submodel attempts to locate offset intersections for the new intersections only. It works the same
way as submodel ¢3.2 Prepare Intersections. The submodel attempts to find offset intersections and
measure the actual offset distance for each intersection, which is the distance between the centerlines
of the intersecting legs at an intersection. If the offset distance is greater than zero, the intersection is
identified as an offset intersection. Separate minimums can be specified for urban and rural areas at
which an intersection is considered an offset intersection, before executing the submodel. The default
value for urban areas is 50 feet and for rural areas 100 feet. The submodel is too large and complex to
show in this guide, therefore programmers are advised to review the model in ArcCatalog using ArcGIS
ModelBuilder.

Submodel u3.4 Populate Intersections

This submodel attempts to populate attribute data for new intersections only. It works the same way
as submodel ¢3.3 Populate Intersections. The submodel combines intersection features provided by
the transportation agency, attribute data from the previous submodels, and the RDE tool templates
to create the Intersection dataset. Once created, the submodel copies the Intersection dataset to the
MIREProject geodatabase. Figure 19 provides an overview of the submodel.

Figure 19. Submodel u3.4 Populate Intersections.

Model 8 Update Legs and Intersections

This model attempts to find newly created intersections (field IsNew = "Yes”) and creates legs for these
intersections. Due to the complexity of the model, it is split into five submodels that are stored in the
MIRE_update toolbox: u4.1 Create New Legs, u4.2 Find Divided Legs, u4.3 Populate Legs, u4.4 Finalize Legs,
and u4.5 Finalize Intersections. If the model cannot find any new intersections it will stop executing. If the

model finds any new intersections it will execute all submodels. Figure 20 provides an overview of the
model and submodel relationships.

Figure 20. Model 8 Update Legs and Intersections.

The submodels are too large and complex to show in this guide, therefore programmers are advised to
review the models in ArcCatalog using ArcGIS ModelBuilder.

Submodel u4.1 Create New Legs
This submodel creates new legs around new intersections the same way as submodel c4.1

Submodel u4.2 Find Divided Legs
This submodel finds divided legs among new legs and works the same way as submodel c4.2.

Submodel u4.3 Populate Legs

This submodel populate new intersection legs and works the same way as submodel c4.3.

Submodel u4.4 Finalize Legs

This submodel creates the final version of the intersection legs and copies them to the IntersectionLeg
feature class in the MIREProject geodatabase. It works the same way as submodel c4.4.

Submodel u4.5 Finalize Intersections

This submodel calculates the intersection angle for new intersections, merges old intersections with
new intersections to create the final Intersections feature class, and copies the feature class to the final
location, i.e. the MIREProject geodatabase.

Retire Intersection Features Business Process

To retire existing intersection features, users should execute model 6 Prepare Update Data and model
7 Update or Retire Intersections in the MIRE_3 toolbox. When retiring intersection features, the models
serve the following purpose:

® 6 Prepare Update Data: Creates a temporary datasets to allow model validation.

® 7 Update or Retire Intersections: Retire intersection features.

The business process to retire intersection features uses the same models and submodels that are
described in the section Update Features Business Process, with the exception that model 8 Update Legs
and Intersections does not need to be executed. Note also that only intersection features will be marked
as retired, intersection legs do not have a status field to indicate whether they have been retired or not.

Script Calculate Intersection Angle

The intersection angle is the smallest acute angle between any two legs at an intersection. The script
CalculatelntersectionAngle.py in the toolbox MIRE_support uses the Python programming language
to find the intersection angle at each intersection. The script is stored at C:AMIRE_Tool\Scripts\
CalculatelntersectionAngle.py and is included in its entirety in Appendix IV.

The script is used by model c4.5 Finalize Intersections and model u4.5 Finalize Intersections. The script uses
the following parameters (Figure 21):

m |eg_Centroid_table. This table provides the attributes LegID, LegAngle, and NodelD for the script.
LegID is the unique identifier for each intersection leg. NodelD is the unique identifier of the
node that the leg is connected to. LegAngle is the angle between a leg and the north direction
going clockwise.

= |ntersection_Template_Layer. This feature layer is the layer created from the intersection template
in the Templates feature dataset.

® ntersection_Table_Path. This string specifies the location of the output table.

= ntersection_tbl: This table is the output of the script. The table contains the fields intersectionID
and INTSECT_ANG_MS (intersection angle measurement.)

-
Calculate Intersection Angle Properties

| General | Source | Parameters | Validation | Help |

Display Mame Data Type
Leg Centroid table Table
Intersection Template Layer Feature Layer
Intersection Table Path String
Intersection Table Table

4 | i

Parameter Properties

Click any parameter above to see its properties below.

Property Value

Type
Direction
Multivalue
Default
Ervironment

Filter
Fiktzinad fram

To add a new parameter, type the name into an empty row in the
name column, dick in the Data Type column to choose a data type,
then edit the Parameter Properties,

) b

oK | [Cancsl ||

Anply

Figure 21. Parameters of Script Calculate Intersection Angle.

The output of the script is a table intersection_tbl which, depending on the model that called the script,
might be stored in the geodatabases IntermediateData or UpdateFeature.

6. RDE Tool Addin

The RDE tool includes an ArcGlIS custom toolbar with buttons that execute ArcGIS ArcToolBox models
described in the previous chapter, ArcGIS custom data entry interfaces, and a data export algorithm,
among other features. The ArcToolBox models add attribute data to existing intersection point features,
create intersection leg line features, and attach attribute data to both. The data entry interfaces allow
the manual entry of data that is not available in a database format, such as video logs. Figure 22 provides
a screenshot of the MIRE toolbar.

ustomize Windows Help
K EEERO L
B2 E Ei]sweet\tiewj{{b QX & 94&)

Figure 22. MIRE Toolbar.

Code Structure

The MIRE toolbar is an ArcGIS Addin, created with ArcGlIS libraries and VB.NET. The tool includes
several classes and forms as shown in Figure 23.

[Solution 'MIRE' (1 project)

4 MIRE
& My Project

b Images
clsConfiguration.vb
clsCreatelntersection.vb
clsDeletelntersection.vb
clsEditFeaturevb
clsEditRamp.vi
clsExport.vb
clsMIREExtension.vb
Config.esriaddinx
frmExport.vb
frrnIntersection.vb
frmintersectionLeg.vb
frmRamp.vb
VB mdlDataModel.vb

kWl 5555553

Figure 23. MIRE Toolbar Solution.

The Addin includes four forms: Intersection (frmintersection.vb), Intersection Leg (frmintersectionLeg.vb),
Ramp (frmRamp.vb), and Export (frmExport.vb). The first three forms allow users to edit intersections,
intersection legs, or ramps. The fourth form allows users to export intersection and intersection leg data
to a comma separated value (CSV) format.

The tool reads setting information in the MIRE_Settings.xml file that is located in the folder C:\MIRE_Tool\
Addins. If a user needs to change the location of the XML file, it is necessary to change its path in the
class clsConfiguarion.vb as shown in Figure 24.

FILE EDIT MIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
O-0 Br-als <O - p Stat- Release -+ A _ fIff h % N -

clsConfiguration.vh ® X
#z clsConfiguration - Bl (Declarations)

ElPublic Class clsConfiguration
Public Const xmlFilePath As String = "C:\MIRE_Tool\AddIns\MIRE_Settings.wml™

End Class

533UN0S Bl %0Q|oo)

Figure 24. Class clsConfiguration.

After changing any file in the MIRE tool source code it is necessary to recompile the code. Note that this
version of the code has been compiled with Microsoft Visual Studio 2012. Other versions of Microsoft
Visual Studio might not work with the tool. The ArcGIS custom toolbar code will be upgraded during the
next RDETAP project to allow for expansion and compilation with the latest version of Microsoft Visual
Studio.

The configuration file Config.esriaddinx contains information about the MIRE tool such as tool name,
tool description, version, and tool icon file path as shown in Figure 25. Any of this information could be
modified, however the AddInID should not be changed because each addin needs to have a unique ID

Config.esriaddinxg # X -

EI<ESRI.Configuration xmlns="http://schemas.esri.com/Desktop/addIns" wxmlns:xsi-=
<MName>RDETAP Tool</Name: -
<AddInID>{@3a2ff2c-e5dd-4e77-a4d5-T9ale96ffd3d}</AddInID>

<Description»MIRE Intersection, IntersectionLeg, and Ramp Manager</Descrip
<Version»3.8.8</Version:

<Image>Images\MIRE.png</Image>

<8uthor:Tim Gunn, Jerry Le, and Edgar Kraus</Authors

<Company>Texas Afamp;M Transportation Institute</Company:
<Date>12/31/2016</Date:

7] <Targets>

<Target name="Desktop” wersion="18.3" />

| </Targets:
El <AddIn language="CLR4.5" library="MIRE.dl1" namespace="Microdesk.VHB"> -
100% =~ 4 2

Figure 25. MIRE Tool Configuration File.

Other elements of the configuration file contain information about classes in the tool which should not
be changed.

XML Configuration File

The XML configuration file MIRE_Settings.xml is located at C:AMIRE_Tool\AddIns and provides basic
settings for the RDE tool. The XML configuration file contains the following elements:

® Layers. All Layer elements have the attributes Label and DatabaseName. Label defines how an
element is displayed on the screen in ArcMap, while DatabaseName is the name of the feature
class as stored in the geodatabase. Note that the attribute Label should not be modified. There
are four Layer elements.

+ Layer AssetNode.

+ Layer Intersection.
Layer IntersectionLeg.

« Layer Ramp.

Each Layer element has the element Field with the attributes Label, DatabaseName, and Enabled.
Each field element describes a field or column in the corresponding feature class. Label defines
how an element is displayed on the screen in ArcMap, DatabaseName is the name of the field as
stored in the feature class of the geodatabase, and Enabled defines whether a field can be edited
using the RDE tool toolbar. If Enabled is set to “True” it can be edited through the interface, if it set
to “False” it is greyed-out and cannot be edited.

= Models. There are two models with the attributes Label, ToolboxPath, and ToolName.
Model Updatelntersections.
« Model PopulateNewintersections.

Label defines how a model is displayed on the screen in ArcMap, ToolboxPath describes the
location on the local computer where the MIRE toolbox is stored, and ToolName specifies the
name of the tool in the MIRE toolbox.

® Paths. There is one path stored in the MIRE XML configuration file, which is the location of the
RDE tool’s exported files. The name of the element is InitialCSV_ExportPath. The path does not
have any attributes.

m SelectTolerance. This element has one sub element called ExpandMapUnitsBy, with a value that
is set to “20.” ArcMap map units are the units in which the spatial data in the map or scene are
drawn. Map units are determined by the linear coordinate system of the map or local scene.
When a user tries to select an intersection, intersection leg, segment, or ramp by clicking on it,
the ExpandMapUnitsBy value will determine the area in which the tool will search for a feature.
With a default value of “20,” the RDE tool will try to find and select the first feature in the area
with a radius equal to 20 map units around the location of the click.

Use of MIRE Toolbar

While the RDE tool toolboxes and scripts allow users to process thousands of intersections and
intersection legs in one session, the toolbar is intended to add, delete, or edit one intersection or
intersection leg at a time. This feature is useful when add or update a small number of intersections
or intersection legs, or when adding data that is not easily accessible in a geospatial format. The MIRE
toolbar consists of five tools:

= Edit intersection or intersection leg.

= Edit Ramp.
®m Delete Intersection.
® (Create Intersection.

® Export Intersection and Approach Data.

The following provides a detailed description of each tool.

Edit Intersection or Intersection Leg

Clicking on the Edit Intersection or Intersection Leg button and then on an intersection feature will
produce a window with intersection attributes and various dropdown menus, as shown in Figure 26.

A user can update the information in this window as desired and click OK to save the changes. The
contents, i.e. fields and labels of this window can be adjusted by a programmer, for example some fields
that are not editable or are not needed could be hidden from view.

The MIRE_Settings.xml configuration file can be used to prevent edits to certain fields. For example,

the field intersectionID is greyed out and cannot be edited by a user, as shown in Figure 26. To prevent

a field from being edited by user, open the MIRE_Settings.xml configuration file in a text editor, search
for the field name that needs to be greyed out, and change the Enabled attribute from True to False. The
following is an example of how to prevent edits to the field agencylD shown in Figure 26:

Original code
[...]
<Layer Label="Intersections” DatabaseName="Intersections”>
<!--Field Names-—>
<Field Label="agencyID” DatabaseName="agencyID” Enabled="True”/>

<Field Label="intersectionID” DatabaseName="intersectionID”
Enabled="False”/>

[...]
Modified Code
[...]
<Layer Label="Intersections” DatabaseName="Intersections”>
<!--Field Names-—>
<Field Label="agencyID” DatabaseName="agencyID” Enabled="False”/>

<Field Label="intersectionID” DatabaseName="intersectionID”
Enabled="False”/>

[...]

-
INTSECT_DFFST_DSTHCE_MS
kv biaTyprt Pl ot - BTSECT TRFC_CTRAL_TYPE Soralaed twih ped sonal) -
trseconTypad Fouiogs ? SRAILTIPR: it 5
irScContoll Sonals pre tmed {utighase) - INTSECT_LTG_FLG W -
etlsetirserpection No. the rterectng lege arm o oifset i R _INTSECT_LHLOTY
felteren 0 CIRC_HT_LN_IDTH_NS =
prowitEack ' CIHRC_ TS INSCR_ DU S
growhEoe ~ CIRCNTS_BICY_FCLTY.TYPE -
i i Irdmrocsion N ' Variked -1

Figure 26. Intersection Attributes.

Edit Ramp

Clicking on the Edit Ramp button and then on a ramp feature produces a window with ramp attributes
and various dropdown menus, as shown in Figure 27. A user can update the information in this window
as desired and click OK to save the changes. The contents, i.e. fields and labels of this window can be
adjusted by a programmer, for example some fields that are not editable or are not needed could be
hidden from view.

R AT
R TR, T B g -
MAALE_RCRY_NICH SAIT Sl
e Tyt On comp - L RAIT, T _povete Fen Frortage rmad -
g Toll e s Pl T e TR gt B0 welh reapect 13 miiniing Infls faw b Pl
ramp iC . B Tt SN Acceberation Lore .
rumOfLares 1 B, T
ramplang® JITT EORTFIESM D Asn TR T T Fight e mith resguect b manin teflc rw ot rters
prownFacks ST Siae Hgresy Agency -
St Soace - A SUBLTE Prece mend dher lRevEy B SRRHWEA. =
AT Veried 9 -
opmnedTa Tl
lagtper Fapceor
mecidentCount
e .

Figure 27. Ramp Attributes.

Delete Intersection

The Delete Intersection button on the MIRE toolbar allows a user to delete an intersection feature
manually. The tool deletes the intersection feature and record in the feature class Intersections, all
associated intersection legs and records in the feature class IntersectionLeg, but not the related node
feature in the feature class AssetNode. To manually delete an intersection, click on the Delete Intersection
button and then on the intersection (Figure 28).

Ele St few ool lpsart e _:. g £ i Mfiedowt Help

DBE@S L Bl x oo id s X EERRO My FIREDED R - [Foabky
N - A RO BN N (e =T el o @ 0y

Table O Comterts X

]

Figure 28. Delete Intersection Button on the MIRE Toolbar.

Create Intersection

The Create Intersection button on the MIRE toolbar allows a user to create a new intersection feature
in the Intersection feature class (Figure 29). The Create Intersection tool requires that an asset node is
located where the intersection is going to be created, or more specifically, a record in the feature class
AssetNode. This is necessary because both spatial location and intersection ID of the intersection are
managed by the asset node.

el — -_- o —— - HEH:];‘E"E
Yea Rockmarks josert Jelection Gecp g & Wndows Help
HDgda BX o e e M EEEEDE RN D ER . mes
HAPQ RN+ W-Tv@ BINALE TR o xEoe,
T..I.: '}ﬂ = % Erasde Intemecibon " - =
TJII - o Ciaibe hntbrwialiots oy | <Topenctbuers =}
= l'?h]’ﬁ"l -:ﬂ rn. =
2] MEE Gupn & Fress P por moce heip, g
= B Tntessections -~
= a'p..w., (cwder LOTLIOO4ID R PRLERFesl *
- Fuid ke
o B ASSET_NODES CHECTH) 4
» Shape FuntM
olie g ey R
o FODNT_N 1971500677515
1 B Teitial Bnput Ditagece PONTY BT IT
i B TPT Traffichection 2015 i e
o B W _Lanesdld
57 3
= B WA A
= B wern
= BB LotaligensPubhchosds Limes 025
5 B SRMELRSRanp 233120
G B WA County Brdys
& [Functionallless 5k
i [FunetionalClais MenSh
A [AW AscesiComalind
il O A _Lansedild
G [RW Legalipsediimscild
@ [AW Mischan24
@ [R UrbanRuraiLi
1 [} TPT_ TrabheATRC tamee MLL | -
T Inbermecdate Dusast L L2 R i b Mensfied | fertune
_ATTITAS B Pt

Figure 29. Create Intersection Button on MIRE Toolbar.

Once the intersection feature is created, a user might run the models 6 Update Intersections and 7 Update
Legs to add data to the new intersection feature, and create and update the intersection leg features, as
described previously.

Export Intersection and Approach Data

The Export Intersection and Approach Data button on the MIRE toolbar allows a user to export all
or selected intersections in the Intersection feature class, and all or selected intersection legs in the
IntersectionLeg feature class (Figure 30).

File Eda View

Bechmanis Insert Sk

ik I it [T

Dedd |

Bxi= -)
NO ELASSTEH, 00

Help

x

B Low Resshution 15m Imagery M
i Miah Reschution Bcm Imagery = | [HB 2 0

P
=]

. |5
-~

® Fa

& MIRE support

S 1 tmpart Deta

3pe 1 Prepare Background Duis

= ¥ Corute Mew Intersections

e 4 Coeste Mew Legn ieed Update Intersectio
e 5 Conalte Miw Rimpd
?iﬁﬂmr!lhddlﬂ-lu

= 7 Update or Petine Intersetions

S 8 Upeluie Loy aned Iterpectosen

[2

MIRE_update

S ull Updste npersection St
= 32 Firsd Miajon Mhimsce Risad
2= udF Find Offset Intersectson |
3= uld Populste Intersechons f
= AL Crmate Mrw Legs
s (ol Find Dividted Lo
o= 43 Populste Legs

o 1A 4 Finalize Legs
:ﬂ'l'd..'i-rnﬁehﬂwcﬁn':
Mdtidimeraon Took

1971759 BMBELTY Fert

Figure 30. Export Intersection and Approach Data Button on Mire Toolbar.

After clicking on the Export Intersection and Approach Data button, a window appears that lets a user

export intersections, intersection legs, or both (Figure 31).

-

e

ot Export to CSV file

=NEIN

Intersection Export

File Name:

-]

[] Export Selected Intersections Only

IntersectionLeg Expart

File Mame:

(-]

[] Export Selected IntersectionLeg Only

Figure 31. Export Intersections and Intersection Leg Data.

®

Clicking on the top path (...) button allows a user to specify a CSV file, or provide a new file name for
export of intersections. Clicking on the bottom path (...) button allows a user to specify a CSV file, or
provide a new file name for the export of intersection legs. By default, all records in the Intersection
and IntersectionLeg feature classes are exported to the location specified. The export can be limited to
features that were previously selected in ArcMap using the Select tool, and checking the boxes “Export
Selected Intersections Only” and “Export Selected IntersectionLeg Only.”

Default Location for Exported Files

The default location for exported files is C:AMIRE_Tool\Export. The default location is determined by
the XML configuration file MIRE_Settings.xml, which is located at C:\MIRE_Tool\AddIns. To modify the
location, search for the following text in the XML configuration file, and make changes accordingly.

<Paths>
<InitialCSV _ExportPath>C:\MIRE Tool\Export</InitialCSV ExportPath>

</Paths>

7. RDE Tool Modification Instructions

The RDE tool consists of many components: data model, geodatabases, toolboxes, and a toolbar. All
components can be adjusted to the needs and datasets available at the transportation agency. However,
all components are related, so modifying one component will requires some modifications to other
components. Note that the current version of the RDE tool toolbar uses Visual Studio 2012. Recompiling
the tool with a more recent version of Visual Studio might cause some errors and might require some
code modifications and upgrades. As mentioned earlier, the next RDETAP project will upgrade the
ArcGIS custom toolbar code to allow modification and compilation with the latest version of Microsoft
Visual Studio.

This chapter provides an overview of generic steps for an implementation project, followed by in-depth
guidance on how to modify the components of the RDE tool.
Recommended Process to Implement the RDE Tool

Each implementation at a transportation agency is a unique project with unique goals and objectives.
However, based on past experiences, there are several steps that a transportation agency could consider
that have proven beneficial to past implementation projects, as follows:

= Form implementation team.
« Determine if local agencies should be involved.
® Establish goals and objectives in general terms.
« Gather input datasets as feasible.
« Analyze input datasets and develop detailed data mapping.
« Develop draft state-specific data templates.
+ Prepare materials for implementation workshop.
= Conduct implementation team workshop.
- Establish detailed goals and objectives.
 Discuss analysis of input datasets and data mapping.

« Discuss state-specific data characteristics, linear referencing methods, data management
approach.

« Gather additional input datasets as needed.
= Develop RDE tool modification plan, timeline, and milestones.
= Modify RDE tool.
= Conduct implementation team meetings (webinars) at milestones.
= Deliver modified RDE tool.

« Deliver draft version for agency review.

« Make requested changes and deliver final version.

= Provide ongoing support as needed.

Changes to RDE Tool Data Model

The current data model used for the RDE tool includes the fields that most transportation agency would
require to conduct roadway safety analysis. Additional fields that a transportation agency might require
can be added to the final output datasets (i.e. Intersection, IntersectionLeg, Ramp, and Segment) without
modifying the data model.

Templates for the output datasets are provided in appendix lll. A transportation agency can modify
domains for attributes in the geodatabases as needed. Values of a domain can be modified directly in
a geodatabase by right clicking on a geodatabase, selecting Properties, and then selecting the Domain
tab (Figure 32). A list of domains will be displayed in the top half of the screen, while the coded values
for each domain will be displayed on the bottom half. By clicking on any domain, coded values can be
added, modified, or deleted.

F' ™
Database Properties u
Domains

Domain Name Description &
accessControl |_|
APR_PED_SGN_SPCL_FE|APR_PED_SGM_SPCL_FEAT_TYPE
APR_RT_TRN_ON_RED_ |APR_RT_TRN_ON_RED_PRH_TYPE
APRCH_CRSWLK_TYPE |APRCH_CRSWLK_TYPE
APRCH_DRCT_FLOW_Tv|APRCH_DRCT_FLOW_TYPE
APRCH_LT_RT_TURN_PR|APRCH_LT_RT_TURN_PRHB_TYPE
APRCH_LT_TURN_LN_T |APRCH_LT_TURN_LN_TYPE i
ADRCH I T THRN BRAT [APRCH | T TIIRW PRAT TWPF

] |:| 3
Domain Properties:
Field Type Long Integer -
Domain Type Coded Values |:|
Split policy Default Value
Merge policy Default Walue
L
Coded Values:
Code Description -
1 Full &ccess Control [
2 Partial Access Control
3 Mo Access Control
99 Unknawn
4 [l b
[ok || cancel || ool

Figure 32. RDE Tool Database Domain Values.

Changes to RDE Tool Geodatabases

As described in Chapter D, the RDE tool consists of five geodatabases (Figure 33). Geodatabases are used
to store input datasets, RDE tool templates, intermediate data, and the final output data. Refer to the
Chapter D to learn more about RDE tool geodatabases.

|3 InputData.qdb

(W | IntermediateData.gdb
(W] InternalData.gdb

|3 MIREProject.gdb

a UpdateFeature.gdb

Figure 33. RDE Tool Geodatabases.

These geodatabases have feature datasets which require a coordinate system. If a coordinate system
needs to be changed, a user can change the coordinate system by following the steps below (Figure 34):

Select Properties.

Right-click on a feature dataset in ArcMap.

Select the XY Coordinate System tab.

Click on the down arrow next to the globe.

Select New or Import to enter a new coordinate system or import a coordinate system from an
existing feature class.

-
Feature Dataset Properties

[S5)

General | XY Coordinate System | Z Coordinate System | Domain, Resolution and Tolalance|

AR MECE N R

= 55 Favorites
@ MAD 1983 _HARM_StatePlane_Missouri_Central_FIPS_2402

£ Geegraphic Coordinate Systems
£ Projected Coordinate Systems

@ MAD_1983_HARMN_StatePlane_Washington_South_FIPS_4602_Feet

Current coordinate system:

MAD_1983_HARMN_StatePlane_Washington_South_FIPS_4602_Feet
WEKID: 2927 Authority: EPSG

Projection: Lambert_Conformal_Conic
False_Easting: 1640416.666666667
False_MNorthing: 0.0

Central_Meridian: -120.5
Standard_Parallel_1: 45.83333333333334
Standard_Parallel_2: 47.33333333333334
Latitude_Of Origin: 45.

Linear Unit: Foot_US (0. 3048006096012193)

Figure 34. ArcMap Feature Dataset Properties.

53)

To change a geodatabase to store temporary data, input data, or final output data, it is necessary to
modify several paths in the RDE tool toolbox code. Renaming any of these geodatabases also requires
modification of several paths in the RDE tool toolbox code.

To use the templates in the InternalData geodatabase, copy a template from the Templates feature
dataset and remove the suffix_Template. For example, INTSECT_LEG_Template would become INTSECT_
LEG. Other datasets can be added to this geodatabase as needed. However, all spatial and non-spatial
datasets must be imported into the MIREProject geodatabase before they can be used with the RDE tool.
For example, datasets in Excel or relational databases should be converted to a geodatabase before
using the data with the RDE tool.

Changes to RDE Toolboxes

As described in Chapter E, the RDE tool uses three toolboxes: MIRE_3, MIRE_support, and MIRE_update.
Refer to Chapter E for more information before making any changes to the toolboxes. Note that models
in the MIRE_3 toolbox call several submodels in MIRE_support and MIRE_update toolboxes. Changing
the names of submodels will not affect the models in MIRE_3. However, the names of submodels do not
update automatically. If a submodel in MIRE_support and MIRE_update toolboxes is removed, models

in MIRE_3 might not work. Processes inside submodels can be changed if needed, however, proper
planning and testing are required before making any changes to the submodels. Changing the MIRE_3
toolbox name requires changing this name in the RDE tool XML configuration file where the RDE
toolbox is referenced.

Changes to RDE Tool Toolbar

The RDE tool toolbar was originally written in VB.NET version 2008. The RDETAP pilot implementation
project modified the code and recompiled it with VB.NET version 2012 in Visual Studio .NET 2012.
However, Visual Studio 2012 does not fully support this toolbar add-in. As a result, the toolbar can be
recompiled, but the code but cannot be debugged in Visual Studio 2012. The next RDETAP project will
upgrade the toolbar code to be fully compatible with the latest version of Visual Studio.

Before making any modification to the code, it is necessary to review Chapter F that describes the RDE
tool toolbar and related code. Changing the code will require a solid knowledge of VB.NET and ArcGIS
add-ins for .NET.

8. Case Study: Implementation of RDE Tool at Washington State DOT

This chapter provides a summary of the pilot RDE tool implementation at WSDOT and the process
the RDETAP team followed to facilitate implementation. The intent of the chapter is to provide
future transportation agencies an idea of the resources and efforts needed to conduct a RDE tool
implementation by providing a real-life implementation example.

The project team essentially followed the recommended implementation process described in the
previous chapter. This chapter provides a summary of activities at each step of the implementation
project.

Form Implementation Team
The pilot implementation team consisted of the following:

B Project team, consisting of FHWA project manager, Leidos project manager, TTl implementation
manager, and TTI programmer.

= WSDOT staff, including WSDOT GIS data manager, WSDOT data management supervisor,
WSDOT traffic data manager, and lead WSDOT Safety Analyst programmer.

Once the implementation team was formed, the project team conducted a kickoff meeting to introduce
the RDE tool and purpose of the project, introduce important project contacts, and discuss the
necessary steps to complete the next step of the implementation process.

Establish Goals and Objectives in General Terms

Following the kickoff meeting, TTI collected all requested input datasets with the intent to come up
with a general implementation plan. WSDOT's main goal for the RDETAP project was to integrate

several roadway datasets internal to WSDOT and datasets developed or provided by external agencies,
in an effort to create an integrated dataset that could be exported to AASHTOWare Safety Analyst, the
roadway safety analysis tool in use at the DOT. WSDOT also requested to expand the RDE tool code

to allow for the calculation of certain MIRE data elements not yet included in any datasets available to
WSDOT. TTl analyzed the contents of the input datasets and created an Excel spreadsheet that produced
a preliminary mapping of existing state data to the available MIRE/Safety Analyst templates. The result
of this task was a detailed description of all data elements and their transcription into draft, WSDOT-
specific output data templates.

In addition, the project team developed data models and presentation materials for the implementation
workshops. The project team developed the following objectives:

® Create three MIRE-compatible GIS layers for the feature types intersections, intersection legs,
and ramps.

® Extract roadway inventory data from WSDOT GIS linear and point data, and transfer the data into
the MIRE-compatible GIS layers stored in a geodatabase.

= Expand the ArcGIS models to calculate data fields that can be extracted using the GIS roadway
geometry.

® Document necessary changes to RDE tool based on WSDOT data management process and
requirements, define input data and output templates, and modify tool accordingly.

® Provide a bug-free and working RDE tool to WSDOT.
= Provide technical support to implement the tool at WSDOT.

® Provide all available documentation related to the RDE tool.

Conduct Implementation Team Workshop

The project team set up a series of workshops over the course of two days to discuss the output data
templates, and methods to derive the data. The meetings were scheduled as follows:

= Day 1: Meet with WSDOT staff, including GIS data management staff, IT management, and safety
data analysts to discuss the following:

+ Meet in the morning to discuss the project overall, goals and objectives, current
implementation status.

« Meet in the afternoon to discuss WSDOT data collection and analysis process, safety data
analysis process using tool output including custom interfaces, and WSDOT’s plans for future
process enhancements. Discuss sample data provided by MoDOT and data mapping.

= Day 2: Meet with WSDOT staff, including GIS data management staff, IT management, and safety
data analysts to discuss the following:

« Meet in the morning to continue discussion on future improvements, including roadway
segment and custom interfaces, and discuss tool implementation schedule, trial runs, and
tests.

« Meet in the afternoon with Safety Analyst team to discuss input requirements, participate in
Safety Analyst demo, and discuss GIS data modification and export/import business process.

The implementation team dedicated a significant amount of time at the workshop meetings to discuss
the data mapping document in detail. For example, team members discussed which data elements to
extract, which domain values to retain, and where to store the data elements in the output template.
Team members also discussed possible options to generate or calculate new data elements that did not
exist previously in a state database. As a result, team members described a plan to calculate intersection
offset and intersection angle values.

Develop RDE Tool Modification Plan, Timeline, and Milestones

Following the workshop meetings, the project team revised the data mapping document and
developed a detailed implementation plan. The plan included tentative milestones for the following:

= RDE tool modifications and initial submission to WSDOT.
= RDE tool installation on WSDOT server.

= RDE tool testing and follow-up phase.

= RDE tool development workshop.

= Additional RDE tool modifications and final tool submission to WSDOT.

In addition to the modification plan, the project team developed a task list that described the RDE tool
modifications in detail. This allowed the project team to schedule resources and update meetings at
project milestones. Table 6 provides an overview of the timeline for the implementation of the RDE tool
at WSDOT along with a description of major project development milestones.

Table 6. WSDOT RDE Tool Pilot Implementation Timeline.

Date Milestone

11/2014 Project team delivers webinar to WSDOT to demo RDE tool and discuss potential pilot.

01/2015 WSDOT becomes first state to participate in RDE tool implementation, implementation team
formed.

03/2015 TTl receives required WSDOT input datasets and starts data analysis and data mapping.
05/2015 Project team and WSDOT agree on RDE tool modifications.

07/2015 TTI delivered the first version of the modified RDE tool.

08/2015 TTI delivered the second version of the modified RDE tool.

09/2015 Workshops at WSDOT offices to discuss RDE tool upgrades.

1172015 TTI delivers update to modified RDE tool.

01/2016 Project team and WSDOT discuss further RDE tool modifications.

04/2016 TTI delivers draft final RDE tool.

07/2016 TTI delivers final RDE tool.

Conduct Implementation Team Meetings (Webinars) at Milestones

The project team conducted approximately monthly update meetings to discuss progress and recent
RDE tool modifications. Typically, the project team would deliver an updated version of the RDE tool to
WSDOT, provide follow-up to assist with the installation of the tool, provide instruction on the use of the
new features, and then allow for some testing by the transportation agency. Once WSDOT was ready to
provide feedback, the implementation team conducted a progress meeting. The implementation team
made frequent use of web conferencing, which allowed WSDOT to review tool upgrades remotely, and
engage in detailed discussion while reviewing the tool remotely.

RDE Tool Modifications

WSDOT Input Data

TTl received several input datasets from WSDOT, including geodatabases, shapefiles, and tabular data.
Figure 35 shows a list of shapefiles, and Figure 36 shows a list of WSDOT feature classes and tables. As
shown in Figure 36, WSDOT stored most of the state highway attribute data in separate feature classes.
For example, acceleration lanes, speed limits, and special use lanes are separate feature classes. In
addition, there are typically annual updates for each feature class, so it is important to track feature class
versions.

2 WSDOT Data
=) GPSLRS500kSPS.shp
(=) GPSLRSDecSPS.shp
=) GPSLRSIncDecRampsDD.shp
*x) GPSLRSIncDecRampsSPS.shp
GPSLRSIncDecSPS.shp
=) GPSLRSIncSPS.shp
(=) GPSLRSRampsSPS.shp
() sr24kDecrease_20141231.shp
(=) sr24kFtProp_20141231.shp
= sr24kincrease_20141231.shp
(%) sr24kLines_20141231.shp
(%) sr24kRamp_20141231.shp
(=) sr24kTurnbacks_20141231.shp
(%) sr500k_20141231.shp
() sr500klines_20141231.shp

Figure 35. WSDOT Shapefile Geospatial
Data.

& 3 WSDOT.gdb
& PP precision1000

SR24kLRSDecreasingSPS

1*x) SR24kLRSIncreasingSPS

] SR24kLRSLinesSPS

(=) SR24kLRSRampsSPS
AgencylD
(% FunctionalClass_NonSR
FunctionalClass_SR
(&) HuA2013
(%] LocalAgencyPublicRoads_Lines_2013_big
LocalAgencyPublicRoads_LRSRoutes_2013
() MIRE Intersections_2010
(=) NatHwySysLocal
(=) NatHwySysState
[.) RoadwayAccelerationLanes_2013
[%*) Roadwaylntersections_2013
= Roadwaylanes_2013
() RoadwaylegalSpeedLimits_2013
(%) RoadwaySpecialUseLanes_2013
() RoadwayTurnLanes_2013
|~J RoadwayUrbanRural_2013
= RW_AccessControl2014
(%7 RW_Intersections2014
() RW_Lanes2014
RW_LegalSpeedLimits2014
(=) RW_Median2014
(%) RW_UrbanRural2014
() sr24kLRSDecrease_20101231
= SR24kLRSDecreasing_20131231
(%) sr24kLRSIncrease_20101231
(%) SR24kLRSIncreasing_20131231
sr24kLRSRamp_20101231
SR24kLRSRamp_20131231
(%3] TPT_TrafficATRCounts_2014
(%) TPT_TrafficCounts_2014
(%] TPT_TrafficSections_2014
(%) TPT_TrafficSections_2015
WA_County_Bndys
(=) wWAPR

Figure 36. WSDOT Feature Class Geospatial

Data and Tabular Data.

Initial Processing

Most of the datasets were projected to the South Washington State Plane coordinate system (NAD 1983
HARN State Washington South FIPS 4602 Feet). However, some of the datasets were unprojected, for
example MIRE_Intersections_2010, so TTI projected these datasets to the same South Washington State
Plane coordinate system.

WSDOT provided numerous linear roadway asset datasets and two intersection datasets: MIRE_
Intersections_2010 and Roadwayintersections_2013. There was some overlap between the two
intersection datasets, with the majority of spatial features in the MIRE_ Intersections_2010 dataset
included in the Roadwayintersections_2013 dataset. As a result, TTI modified the RDE tool to merge
attribute data from both datasets and avoid duplication of intersection features. Accordingly, the
resulting intersection dataset included some intersections with attributes from either input dataset, and
some intersections with data from both input datasets.

RDE Tool Toolbox Modifications

The RDE tool is comprised of models that are used to process intersections and intersection legs
datasets. The original RDE tool consisted of four models, the project team added numerous models and
submodels and organized them into three toolboxes to create the models for the WSDOT RDE tool, as
shown in Figure 37.
= @ MIRE_3.tbx
?’ﬂ 1 Import Data
53“ 2 Prepare Background Data
&9 3 Create New Intersections
a4 Create New Legs
:90 5 Create and Populate Ramps
5‘-‘“ 6 Update Intersections
a7 Update Legs
| ° MIRE_support.tbx
@@ c2.1 Create Roadwaylnventory
@ 2.2 Create AssetNodes
59‘3 c3.1 Create Intersections
@ 3.2 Populate Intersections
@@ ¢3.3 Finish Intersections
@@ c4.1 Create New Legs
@@ c4.2 Find Divided Legs
§7° c4.3 Populate Intersection Legs
&9 c4.4 Finish Populating Legs
5 Intersect Angle
=] ° MIRE_update.tbx
5‘-‘“ u3.1 Update Intersections
e u3.2 Populate Intersections
& u3.3 Finish Update Intersections
}“ ud.1 Update Create Legs
530 ud4.2 Update Find Divided Legs
3‘-‘“ ud.3 Populate Intersection Legs
@@ ud 4 Finish Updating Legs

Figure 37. WSDOT RDE Tool Models.

A Create New
Legs

5 Create and
Populats

Ramp

3.1 Create
Intersections

c3.2 Fopulate
Intersections

® ¢4l Create
New Legs

¢4.2 Find
Divided Legs

4.3 Populate
Intersection
Legs

4.4 Finish
Populating

The first five models in the MIRE_3 toolbox are used for creating new intersection, intersection leg, and
ramp feature classes, while models six and seven are used to update existing spatial features. Figure 38
and Figure 39 provide a schema of the create business process and the update business process, and

illustrate how the various models and submodels relate to each other.

Legs

& Update
Intersections

u3.1 Update
Intersections

ud.1l Update

Create Legs

udd F
1 3.

inish

6]

Figure 39. Model Relationships and Execution Sequence for WSDOT “Update” Business Process.

Create Business Process Models

Model 1 Import Data

This model imports all input datasets from various data sources into one single geodatabase. The
model uses the ArcGIS Feature Class to Feature Class tool to import the transportation agency’s datasets
into the RDE tools InternalData geodatabase. The imported datasets can then be used by subsequent
models. 7 Import Data does not execute any submodels.

Note that it is important to ensure that all datasets that will be imported using the same coordinate
system. In addition, each dataset has fields that are required for the model to execute. These fields are
dependent on required fields in other subsequent models, but can be adjusted as needed.

Model 2 Prepare Background Data

This model executes the submodels c2.7 Create Roadwaylinventory and c2.2 Create AssetNodes. The

model combines features from the dataset LocalAgencyPublicRoads_Lines_2013 and the dataset
SR24kLRSLinesSPS, which contain roadway features from the local network and the state route network.
In addition, the model adds the field SOURCE to the output feature class to keep track of which

dataset a feature originated from. The model assign the value “local” to features from the dataset
LocalAgencyPublicRoads_Lines_2013, and the value "state” to features from the dataset SR24kLRSLinesSPS.
The model also adds several other fields needed for data processing. Below is the list of the tasks
completed by the model:

= Add and assign SOURCE field to combined state and local route dataset.

® Add and assign JURISDICTION field to state route dataset.

® Add and assign RT_TYPES, RT_TYPEB, and LOCAL_UNIQ_ID to local route dataset.
m Add STATE_UNIQ _ID to state route dataset.

= Merge datasets and add and assign uniquelD field.

= Add and assign Route name.

Model 3 Create New Intersections

This model executes the submodels ¢3.7 Create Intersections, c3.2 Populate Intersections, and ¢3.3 Finish
Intersections. The inputs of the model are Roadwayinventory, DOT_Intersection, and AssetNode datasets.
The Roadwayinventory and DOT_Intersection feature class are created by previous models. The model
copies attribute data from the Roadwaylnventory dataset to the DOT_Intersection dataset. Below is the
list of tasks completed by the model:

® Spatial intersect between Roadwayinventory dataset and DOT_Intersection dataset.
® Determine major and minor roads based highway hierarchy in RT_TYPEB field.

® Calculate unique ID for major and minor roads.

® (Calculate intersection route type based on RT_TYPEA.

® Determine major and minor road name.

= Calculate jurisdiction.

® Calculate major and minor road offset.

® Determine the number of legs at each intersection.
® Run a linear directional mean to calculate route directions.
= Calculate the beginning and ending of a major influence zone.

= Calculate the beginning and ending of a minor influence zone.

Model 4 Create New Legs

This model executes the submodels c4.7 Create New Legs, c4.2 Find Divided Legs, c4.3 Populate Intersection
Legs, and c4.4 Finish Populating Legs. The model creates new intersection legs around each feature in

the Intersections dataset. As a result, intersection legs can only be created after features in Intersections
have been created. By default, each leg is 50 feet in length, which is a value that can be adjusted before
running the model. After crating the leg features, the model populates attribute data for all intersection
legs. Below is a list of tasks completed by the model:

® Select all intersections with the field New=-1.

® (Create a 50 feet buffer around each intersection feature and create leg features.
® Set the value in Agency ID to the value in NodelD.

= |dentify major and minor roads at each intersection.

= Add the field Leg/D and calculate its value.

® Calculate leg direction and leg offsets.

® Populate the speed limit value.

= Populate the leg median type.

Model 5 Create and Populate Ramp

This model merges the Ramp template created by the project team with SR24kLRSRamp_20131231, the
ramp dataset provided by WSDOT. The model also assigns an ID to each ramp feature.

Update Business Process Models

Model 6 Update Intersections

This model executes the submodels u3.7 Update Intersections, u3.2 Populate Intersections, and u3.3 Finish
Update Intersections. The model updates attribute data for all intersection features in the Intersection
dataset. This model should be executed when input datasets have been changed, e.g., some
intersections have been retired, or attribute data in the Roadwayinventory dataset (or its sources) has
been changed.

Model 7 Update Legs

This model executes the submodels u4.7 Update Create Legs, u4.2 Update Find Divided Legs, u4.3 Populate
Intersection Legs, and u4.4 Finish Updating Legs. The model updates attribute data for all intersection

leg features in the IntersectionLeg dataset. This model should be executed when input datasets have
been changed.

Manual Data Entry Interfaces

The project team implemented the generic data entry interfaces that were described in detail in a
previous chapter. The main effort of the implementation was to make changes to the interfaces in
terms of the fields that are shown and can be edited. Since the number of fields in the intersection and
intersection leg templates increased substantially, there was some discussion whether all fields should
be shown on the interfaces, or just a subset. In the end, WSDOT preferred that all fields be shown on the
manual data entry interfaces. As a result, any of the fields can be edited on the interfaces as long as the
computer using the RDE tool has a sufficiently high monitor resolution.

Outlook and Lessons Learned

The RDE tool implementation at WSDOT was the first pilot implementation using the upgraded RDE
tool. The project team took note of the following lessons learned:

= Have the in-person workshops early in the implementation process. Initially, the project
team handled most of the project communications and planning through web conferences and
phone calls. While this is useful to some degree, the project reached a point where it became
necessary to meet in person to discuss project development details. For future implementations,
the project team recommends to have that in-person meeting early in the process, possibly
within the first three months of a one-year implementation project. The project team noted that
once everybody got to know each other, communications were much improved and overall
development cycles were much shorter.

= Have a dedicated contact for RDE tool updates. Before the in-person meeting there was
some uncertainty about who to include in regular tool update communications. After the in-
person meeting, it became clear who to contact in which type of development scenario, and
WSDOT provided a dedicated contact for all technical updates and questions. This made a
significant and positive impact on tool development cycles.

= Data assembly, stakeholder feedback, and tool modification might take longer than
anticipated. Assembling input datasets, creating a data mapping document, determining
data template contents, and providing feedback at various stages of the tool implementation
process are time consuming and involve collaboration from a diverse group of transportation
agency individuals. Usually, most of these individuals are users of the data, while few individuals
manage the data and are familiar with data management and processing issues in Geographic
Information Systems. As a result, decisions on data management strategies as well as feedback
on preliminary tool improvements might take longer than anticipated. This issue is compounded
when outside local transportation agencies are involved to provide or share data with a state
agency, and the number of people involved in providing and processing datasets increases.
Furthermore, some of the RDE tool upgrades had never been implemented, so it was a
challenge for the project team to provide accurate estimates of required resources.

WSDOT indicated that as a follow-up to the implementation, the DOT is interested in a new project that
would involve data extraction and exchange from local data sources.

9. Case Study: Implementation of RDE Tool at Missouri State DOT

This chapter provides a summary of the pilot RDE tool implementation at MoDOT and the process
the RDETAP team followed to facilitate implementation. The intent of the chapter is to provide
future transportation agencies an idea of the resources and efforts needed to conduct a RDE tool
implementation by providing a real-life implementation example.

The project team essentially followed the recommended implementation process described in Chapter
7. This chapter provides a summary of activities at each step of the implementation project.

Form Implementation Team
The pilot implementation team consisted of the following groups:

® Project team, consisting of FHWA project manager, Leidos project manager, TTl implementation
manager, and TTl programmer.

= MoDOT staff, including MoDOT GIS data manager, MoDOT data management supervisor, and
MoDOT Safety Analyst programmer.

= City of Springfield, Missouri, GIS data manager and traffic data manager.

® St. Louis County, Missouri, GIS data manager and traffic data manager.

Once the implementation team was formed, the project team conducted a kickoff meeting to introduce
the RDE tool and purpose of the project, introduce important project contacts, and discuss the
necessary steps to complete the next step of the implementation process.

Establish Goals and Objectives in General Terms

Following the kickoff meeting, TTI collected requested input datasets with the intent to come up with
a general implementation plan. MoDOT's main goal for the RDETAP project was to integrate several
internal and local roadway datasets to create an integrated roadway dataset that could be exported
to AASHTOWare Safety Analyst, the roadway safety analysis tool currently being implemented at the
DOT. MoDOT was also interested to determine whether the RDE tool could calculate certain MIRE data
elements not available from currently available data sources. TTl analyzed the contents of the input
datasets and created an Excel spreadsheet that produced a preliminary mapping of existing state data
to the available MIRE/Safety Analyst templates. The result of this task was a detailed description of all
data elements and their transcription into draft, MoDOT-specific output data templates.

In addition, the project team developed data models and presentation materials for the implementation
workshops. The project team developed the following objectives:

= Create four MIRE-compatible GIS layers for the feature types intersections, intersection legs,
ramps, and segments.

® Extract roadway inventory data from MoDOT GIS linear and point data, and transfer the data
into the MIRE-compatible GIS layers stored in a geodatabase.

= Expand the ArcGIS models to calculate data fields that can be extracted using the GIS roadway
geometry.

® Extract traffic counts from locally available datasets and attach data to the intersection layer
using a neighborhood algorithm.

= |nvestigate the possibility to extract and transfer other locally available data to the MoDOT data
layers.

= Document necessary changes to RDE tool based on MoDOT data management process and
requirements, define input data and output templates, and modify tool accordingly.

= Provide a bug-free and working RDE tool to MoDOT.

= Provide technical support to implement the tool at MoDOT.

® Provide all available documentation related to the RDE tool.

Conduct Implementation Team Workshop

The project team then set up a series of workshops over the course of a week to discuss the output data
templates, and methods to derive the data. The meetings were scheduled as follows:

= Day 1: Meet with MoDOT staff, including GIS data management staff, IT management, and safety
data analysts to discuss the following:

Meet in the morning to discuss the project overall, goals and objectives, current
implementation status.

Meet in the afternoon to discuss MoDOT's data collection and analysis process, safety data
analysis process using tool output including custom interfaces, and MoDOT's plans for future
process enhancements. Discuss sample data provided by MoDOT and data mapping.

= Day 2: Meet with MoDOT staff, including GIS data management staff, IT management, and safety
data analysts to discuss the following:

Meet in the morning to continue discussion on future improvements, including roadway
segment and custom interfaces, and discuss tool implementation schedule, trial runs, and
tests.

Meet in the afternoon with Safety Analyst team to discuss input requirements, participate in
Safety Analyst demo, and discuss GIS data modification and export/import business process.

= Day 3: Meet with representatives from City of Springfield including GIS staff, safety analysts,
and IT management. Include representatives from MoDOT, in person or via conference phone,
as available.

Provide overview/description of project, goals and objectives, anticipated outcomes, and
potential benefits to local agencies.

Discuss City of Springfield safety data collection and analysis process.
Discuss data needs and potential project collaboration.

Discuss expectations and schedule.

= Day 4: Meet with representatives from St. Louis County including GIS staff, safety analysts,
and IT management. Include representatives from MoDQOT, in person or via conference phone,
as available.

+ Provide overview/description of project, goals and objectives, anticipated outcomes, and
potential benefits to local agencies.

« Discuss St. Louis County safety data collection and analysis process.
- Discuss data needs and potential project collaboration.

« Discuss expectations and schedule.

In addition, the project team developed data models and presentation materials for the implementation
workshops.
Develop RDE Tool Modification Plan, Timeline, and Milestones

Following the workshop meetings, the project team revised the data mapping document and
developed a detailed implementation plan. The plan included tentative milestones for the following:

® Review of MoDOT Safety Analyst requirements as described in Oracle export files.
= Review of local datasets and development of data integration plan.

= RDE tool modifications and initial submission to MoDOT.

= RDE tool installation on MoDOT server.

= RDE tool testing and follow-up phase.

= Additional RDE tool modifications and final tool submission to MoDOT.

In addition to the modification plan, the project team developed a task list that described the RDE tool
modifications in detail. This allowed the project team to schedule resources and update meetings at
project milestones. Table 7 provides an overview of the timeline for the implementation of the RDE tool
at MoDOT along with a description of major project development milestones.

Table 7. MoDOT RDE Tool Pilot Implementation Timeline.

Date Milestone

12/2015 Project team delivers webinar to WSDOT to demo RDE tool and discuss potential pilot.

12/2015 MoDOT becomes second state to participate in RDE tool implementation, implementation
team formed.

12/2015 TTl receives required MoDOT input datasets and starts data analysis and data mapping.

01/2016 Project team meets with MoDOT and local transportation agencies to discuss goal and
objectives, review available data.

03/2016 Project team agrees on project implementation plan and plan to integrate local data.

08/2016 TTI delivers data models and templates to MoDOT.

10/2016 TTI delivered the first version of the modified RDE tool.

10/2016 Conference call with MoDOT to discuss RDE tool and upgrades.

12/2016 TTI delivers update to modified RDE tool.

Conduct Implementation Team Meetings (Webinars) at Milestones

The project team conducted several update meetings to discuss project progress and RDE tool
modifications. Once MoDOT staff was ready to provide feedback, the implementation team conducted
a progress meeting. As with the WSDOT implementation, the implementation team made frequent use
of web conferencing, which allowed the transportation agency to review tool upgrades remotely, and
engage in detailed discussion while reviewing the tool remotely.

RDE Tool Modifications

MoDOT Input Data

TTl received several files from MoDOT to include in the RDE tool processing. Table 8 provides an
overview of the MoDOT input files that TTI reviewed and included in the data mapping file.

Table 8. MoDOT Input Files Included in Data Integration Review.

Owner File Name File Type File Content Description
MoDOT MoDOT.mdb ESRI personal TW_INTERSECTION, SS_SEGMENT, and
geodatabase SS_PAVEMENT_CURRENT_TO_ INTERCHANGE
layers
MoDOT MODOT_Export.gdb ESRI file geodatabase | SS_PAVEMENT_CURRENT and SS_
INTERSECTION_CURRENT layers
MoDOT arcsde_data.gdb ESRI file geodatabase | City, county, district, and other polygons

Upon completion of the review, TTl created a data mapping spreadsheet that listed file information and
specific data about each MoDOT feature class. For example, Table 9 provides an overview of the MoDOT
feature class SS_PAVEMENT_CURRENT that was provided to the implementation team in geodatabase
MODOT.gdb.

Table 9. Overview of MoDOT Feature Class SS PAVEMENT CURRENT.

Item Description

Owner MoDOT

File Name MODOT.gdb

File Date 06/17/2015

Table/Feature SS_PAVEMENT_CURRENT

Feature Type Polyline

Geographical Extent | Area around City of Springfield and St. Louis County.
Count of Records 124,761

Table 10 provides a selection of the SS_PAVEMENT_CURRENT attributes and shows how some of these
attributes were transcribed to RDE tool datasets and fields. If an attribute does not appear in the
columns RDE Tool Dataset Name or RDE Tool Dataset Field Name, the attribute was not included in the
data extraction process.

Table 10. Data Extraction Mapping for SS_PAVEMENT_CURRENT Feature Class.

Attribute Data Type RDE Tool Dataset Name RDE Tool Dataset Field Name
SS_PAVEMENT_ID Object ID
TRAVELWAY_ID Long Integer
YEAR Short Integer
TRF_INFO_SEG_ID Long Integer |Segment agencylD
TRF_INFO_SEG_DESC Text
TRAVELWAY_DESG Text
TRAVELWAY_NAME Text Segment, Intersection routeDisplayName, minorRoadName
TRAVELWAY_DIR Text Segment, Intersection majorRoadDirection
TRAVELWAY_OFST_DIR Text
DISTRICT Short Integer
COUNTY_NAME Text Segment CNTY_NM
CNTL_TW_ID Long Integer
CNTL_TW_DESG Text
AREA_DESG_NAME Text
NUMBER_OF_LANES Short Integer | Segment numThrulLaneTotal
AADT Double Segment maxAADT
SURFACE_TYPE Text Segment SRFC_TYPE
SURFACE_DATE Date
FUNC_CLASS_NAME Text Segment roadwayClass]

Data from Other Sources

TTl also received several input data files from local transportation agencies, as shown in Table 11. TTI
reviewed these files to determine whether there was a method to integrate the data with MoDOT

geospatial data.

Table 11. List of Local Transportation Agency Input Files Included in Data Integration Review.

Owner File Name File Type File Content Description
Gy o e e e S.prmgﬁeld Base Model. Trafﬁcvyare SimTraffic | City of Springfield traffic simulation
sim simulation file data
) . Springfield Base Model. Trafficware Synchro Traffic control, intersection, and lane
City of Springfield syn file data for City of Springfield
Intersections, streets, traffic signals,
City of Springfield TempWork.gdb ESRI file geodatabase | and other City of Springfield feature

classes.

St. Louis County

Traffic_Counts.shp

ESRI shapefile

Inventory of traffic counts and
locations in St. Louis County.

St. Louis County

Municipal_Boundaries.
shp

ESRI shapefile

St. Louis County municipal boundary
limits.

St. Louis County

Parcels.shp

ESRI shapefile

St. Louis County property parcel
boundary limits.

Integration of State and Local Datasets

In contrast to the RDE tool implementation at WSDOT, the MoDOT implementation focused on the
integration of data from two local transportation agencies, the City of Springfield, Missouri, and St. Louis
County, Missouri. Whereas integration of data stored in ESRI shapefiles and geodatabases is relatively
straight forward, the project team was unsure to what degree data could be integrated stored in the
data in Synchro and SimTraffic files. TTl was able to export roadway data from the City of Springfield
Synchro and SimTraffic files in CSV format. However, both input files were created in Synchro without
the geospatial referencing feature enabled, therefore TTI was unable to link the lane, layout, timing, and
volume data included in the CSV files to the MoDOT roadway network.

Upon completion of the review of local input files, three files were selected to be included in the state/
local data integration effort: the St. Louis County Traffic_Counts shapefile, a City of Springfield street
feature class, and a City of Springfield TRAFFIC_COUNTS feature class. Table 12 provides an overview of
the City of Springfield feature class street that was provided to the implementation team in geodatabase
TempWork.gdb.

Table 12. Overview of City of Springfield Feature Class street.

Item Description

Owner City of Springfield, Missouri
File Name TempWork.gdb

File Date 01/22/2016

Table/Feature Street

Feature Type Polyline

Geographical Extent | City of Springfield, Missouri
Count of Records 30,368

Table 13 provides a segment of the street attributes, and shows how some of its attributes were
transcribed to RDE tool datasets and fields.

Table 13. Data Extraction Mapping for City of Springfield street Feature Class.

Attribute Data Type RDE Tool Dataset Name RDE Tool Dataset Field Name
OBJECTID Object ID
Shape Geometry
CLASS Text Segment roadwayClass]
STREET_NAM Text Segment routeDisplayName
STREET_TYP Text
SUF_DIR Text
L_COUNTY Text
EDITDATE Date
NAME Text Segment routeDisplayName

Table 14 provides an overview of the St. Louis County shapefile Traffic_Counts that was provided to the
implementation team.

Table 14. Overview of St. Louis County Feature Class Traffic_Counts.

Item Description

Owner St. Louis County, Missouri
File Name Traffic_Counts.shp

File Date 01/22/2016
Table/Feature n/a

Feature Type Point

Geographical Extent | St. Louis County, Missouri
Count of Records 1,043

Table 15 provides a segment of the Traffic_Counts attributes, and shows how some of its attributes were
transcribed to RDE tool datasets and fields. Note that the implementation team opted to change the
attribute names of the Traffic_Counts feature class to indicate the source, St. Louis County.

Table 15. Data Extraction Mapping for St. Louis County Traffic_Counts Feature Class.

Attribute Data Type RDE Tool Dataset Name RDE Tool Dataset Field Name

FID Object ID

Shape Geometry

Onstreet Text Intersection SLC_Onstreet
Atstreet Text Intersection SLC_Atstreet
Month Text Intersection SLC_Month
Bridge_ID Text

DirFrom Text Intersection SLC_DirFrom
LocationID Text

PkHrVol Short Integer |Intersection SLC_PkHrVol
Max24HrDay Text Intersection SLC_Max24HrDay
PkHrDay Text Intersection SLC_PkHrDay
PkHrTime Text Intersection SLC_PkHrTime
PkHrAMPM Text Intersection SLC_PkHrAMPM
Month2 Text Intersection SLC_Month2
AWT Long Integer |Intersection SLC_AWT
Max24HrVol Long Integer |Intersection SLC_Max24HrVol
YearTxt Text Intersection SLC_YearTxt

Year Double Intersection SLC_Year
Initial Processing

The input datasets used different projected and unprojected coordinate systems. For the processed
datasets stored in the InternalData geodatabase, TTI projected all datasets to the same NAD 1983 HARN
State Plane Missouri Central FIPS 2402 coordinate system.

1)

RDE Tool Toolbox Modifications

The RDE tool is comprised of models that are used to process geospatial features, for example
intersections and intersection legs datasets. The project team made use of the modifications created for
WSDOT, where appropriate, which resulted in 31 models and submodels, organized into three toolboxes
as shown in Figure 40.

= @ MIRE_3.tbx
3’“ 1 Import and Project Data
;‘-’ﬂ 2 Prepare Background Data
3’“ 3 Create New Intersections
39" 4 Create New Legs and Update Intersections
:9" 5 Create New Ramps
2@ 6 Prepare Update Data
3‘-’“ 7 Update or Retire Intersections
@@ 8 Update Legs and Intersections
= ° MIRE_support.tbx
@@ c2.1 Create Roadwaylnventory
}“ c2.2 Create AssetNode
}“ c2.3 Create Temp Datasets
39" c3.1 Prepare Intersection
@@ ¢3.2 Find Major minor
3-"“ ¢3.3 Find Offset Intersection
}“ c3.4 Populate Intersection
@ 3.5 Finish Intersections
@@ c4.1 Create New Legs
@@ c4.2 Populate Intersection Leg
@@ c4.3 Finalize Legs
@ c4.4 Finalize Intersections
3-"“ c5.1 Create Ramp
:9" c6.1 Create Segment
3" Calculate Intersection Angle
= & MIRE_update.tbx
@@ u3.1 Update Intersection Status
@@ u3.2 Find Major minor
}’ﬂ u3.3 Find Offset Intersection
e u3d Populate Intersection
@@ u3.5 Finish Intersections
3’“ ud.1 Create New Legs
3’“ ud4.2 Populate Intersection Leg
@@ ud.3 Finalize Legs
}" ud 4 Finalize Intersections

Figure 40. MoDOT RDE Tool Models.

The first five models in the MIRE_3 toolbox are used for creating new intersection, intersection leg, and
ramp feature classes, while models six, seven, and eight are used to update existing spatial features.
Figure 41 and Figure 42 provide a schema of the create business process and the update business
process, and illustrate how the various models and submodels relate to each other.

1 Impart and
Project Data

2 Prepare
Background
Data

3 Create Mew
Intersections

4 Create New
Legs and
Update
Intersactions

5 Create Mew
Ramps

c2.3 Create
Temp

Datasels

¢3.1 Prepare
Intersections

3.2 Find
Major Minar

3.3 Find
Offset
[ntersections

3.4 Populate
Intersections

3.5 Finish
Intersections

v

c4.1 Create
New Legs

4.2 Populate
Legs

4.3 Finalize:

Legs Intersections]

4.4 Finalize

& Prepare
Update Data

7 Update or

Retire
Intersections

& Update
Legs-and
Irtersections

u3d.3 Find
Offset

Intersection

u3.5 Finish

Intersections

h

ud.4 Finalize

Interses :i4_'|r' %

Figure 41. Model Relationships and Execution Sequence for MoDOT “Create” Business Process.

MIRE update

Figure 42. Model Relationships and Execution Sequence for MoDOT “Update” Business Process.

Create Business Process Models

Model 1 Import and Project Data

This model imports all input datasets from various data sources into one single geodatabase,
InternalData.gdb. The model uses the ArcGIS Feature Class to Feature Class tool to import the
transportation agency’s datasets into the RDE tools geodatabase. The imported datasets can then be
used by subsequent models. Model 7 Import and Project Data does not execute any submodels.

Note that it is important to ensure that all datasets that will be imported using the same coordinate
system. In addition, each dataset has fields that are required for the model to execute. These fields are
dependent on required fields in other subsequent models, but can be adjusted as needed.

Model 2 Prepare Background Data

This model executes the submodels c2.7 Create Roadwayinventory and c2.2 Create Asset Nodes. The
model uses features from the dataset Pavement_Current stored in the InternalData geodatabase, which
contains roadway features from the Missouri local network and state route network. The model adds
several fields needed for data processing. Below is the list of the tasks completed by the model:

® Remove duplicate lines in Pavement_Current dataset.

= Add and assign RTE_TYPE field based on TRAVELWAY_DESG field in Pavement_Current dataset.
= Add and assign RoutelD based on TRAVELWAY_ID field in Pavement_Current dataset.

= Assign AADT field based on TOTAL_AADT field in Pavement_Current dataset.

® Add and assign RteUniqlD to Roadwaylnventory dataset.

® (Create spatial intersect between all features in Roadwaylnventory dataset to create AssetNode
dataset.

= Remove duplicate features in AssetNode dataset.

= Assign NodelD to each feature in AssetNode dataset.

Model 3 Create New Intersections

This model executes the submodels ¢3.7 Prepare Intersections, c3.2 Find Major Minor, ¢3.3 Find Offset
Intersections, c3.4 Populate Intersections, and ¢3.5 Finish Intersections. The inputs of the model are
Roadwayinventory, Intersection_current, and AssetNode datasets. The Roadwaylnventory and Intersection_
current feature class are created by previous models. The model copies attribute data from the
Roadwaylinventory dataset to the Intersection_current dataset. Below is the list of tasks completed by the
model:

® Create temporary node dataset in IntermediateData geodatabase based on Intersection_current
dataset and AssetNode dataset.

® Find major and minor roads at each feature in temporary node dataset.
B Find offset intersections and calculate the offset between intersecting roads.
= Populate features in temporary node dataset with data from input datasets.

= Merge features in temporary node dataset with INTSECT_Template in InternalData geodatabase.

74)

® Copy the features created in the previous step to the Intersection dataset in the MIREProject
geodatabase.

Model 4 Create New Legs and Update Intersections

This model executes the submodels c4.7 Create New Legs, c4.2 Populate Legs, c4.3 Finalize Legs, and c4.4
Finalize Intersections. The model creates new intersection legs around each feature in the Intersection
dataset. As a result, intersection legs can only be created after features in Intersection have been created.
By default, each leg is 50 feet in length, which is a value that can be adjusted before running the model.
After crating the leg features, the model populates attribute data for all intersection legs. Below is a list
of tasks completed by the model:

m Select all features in Intersection dataset with the field IsNew equal to “Yes”.
= (Create a 50 feet buffer around each selected feature.

= |ntersect the above buffer with the Roadwayinventory dataset to create new intersection leg
features in a temporary dataset located in the IntermediateData geodatabase.

= Add the field LegID to the intersection leg features and calculate its value.

® (Calculate the leg direction value for each intersection leg feature.

= Populate AADT and the speed limit value for each intersection leg feature.

= Populate the leg median type for each intersection leg feature.

® Merge the intersection leg features with INTSECT_LEG_Template to create the final output

dataset IntersectionLeg.

Model 5 Create New Ramps

This model selects ramp features from the Roadwaylinventory dataset and merges the features with
RAMP_Template in the InternalData geodatabase. Below is a list of tasks completed by the model:

® Select features from Roadwaylnventory dataset marked as ramps.

= Merge the ramp features with RAMP_Template to create final output dataset Ramp.

® Populate data fields in Ramp such as agencyID, numOfLanes, rampLength, RAMP_AADT_YR_NBR,
RAMP_ADVRY_SPD_LMT_NBR, FUNC_CLASS_TYPE, UNIQ_INTCHG_ID, and UNIQ_RAMP_ID.

Model 6 Create New Segments

This model creates the segment dataset from Roadwaylnventory and segment template. Below is a list of
tasks completed by the model:

® Select features from Roadwaylnventory dataset marked as segments.
= Merge the segment features with SGMINT_Template to create final output dataset Segment.

® Populate data fields in Segment such as agencylD, route display name, travel direction, county
name, number of lanes, lane width, shoulder type, shoulder width, AADT, surface type, road
class, county code, speed limit, bridge number, segment ID.

Update Business Process Models

Model 7 Prepare Update Data
This model creates several temporary datasets needed for verifying and running models 8 and 9.

Model 8 Update or Retire Intersections

This model executes the submodels u3.7 Update Intersection Status, u3.2 Find Major Minor, u3.3 Find
Offset Intersections, u3.4 Populate Intersections, and u3.5 Finish Intersections. The model updates attribute
data for all intersection features in the Intersection dataset. This model should be executed when

input datasets have been changed, e.g., some intersections have been retired, or attribute data in the
Roadwaylnventory dataset (or its sources) has been changed. Model 7 Prepare Update Data should be
executed before executing model 8 Update or Retire Intersections.

Model 9 Update Legs and Intersections

This model executes the submodels u4.7 Create New Legs, u4.2 Populate Legs, u4.3 Finalize Legs, and
u4.4 Finalize Intersections. The model updates attribute data for all intersection leg features in the
IntersectionLeg dataset. This model should be executed when input datasets have been changed and
after model 8 Update or Retire Intersections has been executed.

Manual Data Entry Interfaces

The project team implemented the generic data entry interfaces that were described in detail in a
previous chapter. The main effort of the implementation was to make changes to the interfaces in

terms of the fields that are shown and can be edited. Since the number of fields in the intersection and
intersection leg templates increased substantially, there was some discussion whether all fields should
be shown on the interfaces, or just a subset. MoDOT preferred that all fields be shown on the manual
data entry interfaces. As a result, any of the fields can be edited on the interface as long as the computer
using the RDE tool has a sufficiently high monitor resolution.

Outlook and Lessons Learned

The RDE tool implementation at MoDOT was the second pilot implementation using the upgraded RDE
tool. As a result, the implementation project benefited from some of the lessons learned during the first
pilot with WSDOT. As a result, the implementation team opted to have a series of meetings with state
and local stakeholders early in the implementation project. These meetings helped get the project
kicked off on track and established clear communication channels for all parties involved. The project
also adapted some of the code developed for WSDOT, which considerably sped up development work.
The project also developed new code that might be of benefit for the RDE tool developed for WSDOT
(and future implementation states).

10. Concluding Remarks

This Implementation and Programming Guide is intended to be a guide for the adaptation and
implementation of the RDE tool components. It is written from the perspective of the project team that
developed separate, i.e., state-specific versions of the RDE tool for the pilot states. Therefore, a certain
modaule or feature of the RDE tool always depends on a characteristic of an input dataset used at a pilot
state.

The project team attempted to make the data processing as transparent as possible; as a result, the RDE
tool consists of several sub models that could be combined to streamline the model execution process.
The project team decided to leave this task up to each pilot state to make modifications to best meet
the needs of the DOT users.

The project team also discussed the development of an additional interface to edit segments in addition
to the interfaces for intersections, intersection legs, and ramps. The project team did not pursue the
development of the segment interface due to compatibility issues with the software development
environment. The next RDETAP project is expected to rewrite the code for all current interfaces to make
the code compatible with current software development environments, or potentially use ArcGIS native
code, to avoid the compatibility and debugging issues that the project team encountered. The next
RDETAP project is expected to expand the code to include the segment interface.

Readers should take note that MIRE version 1.0, which is the foundation of this MIRE pilot
implementation, is in the process of being upgraded to version 2.0. Although the changes in version
2.0 appear to be minor, the templates used in this RDE tool should be compared to the final version

of MIRE 2.0 to ensure their compatibility. In addition, there are plans to include MIRE in the surface
transportation domain of the National Information Exchange Model (NIEM). Once the MIRE data
elements are included in NIEM, it will provide another option to develop an information exchange that
could transfer roadway data between state and local transportation agencies.

11. References

1.

MIRE MIS. MIRE Management Information System, Office of Safety Programs, Federal Highway

Administration, Washington, D.C., 2014. Available at http:/safety.fhwa.dot.gov/rsdp/feasibility.
cfm. Accessed on September 30, 2016.

Roadway Safety Data Program, Federal Highway Administration, U.S. Department of
Transportation. http:/safety.fhwa.dot.gov/rsdp/mire.aspx. Accessed on September 30, 2016.

Guidance on State Safety Data Systems. Federal Highway Administration, Office of Safety,

Washington, D.C., March 15 2016. Available at http:/safety.fhwa.dot.gov/legislationandpolicy/
fast/docs/ssds guidance.pdf. Accessed on September 30, 2016.

H/ghway Safety Improvement Program, Implementat/on 23 CFR Section 924 11(b) (2016). Available

xml. Accessed on September 30, 2016.

http://safety.fhwa.dot.gov/rsdp/feasibility.cfm
http://safety.fhwa.dot.gov/rsdp/feasibility.cfm
http://safety.fhwa.dot.gov/rsdp/mire.aspx
http://safety.fhwa.dot.gov/legislationandpolicy/fast/docs/ssds_guidance.pdf
http://safety.fhwa.dot.gov/legislationandpolicy/fast/docs/ssds_guidance.pdf
https://www.gpo.gov/fdsys/pkg/CFR-2016-title23-vol1/xml/CFR-2016-title23-vol1-sec924-11.xml
https://www.gpo.gov/fdsys/pkg/CFR-2016-title23-vol1/xml/CFR-2016-title23-vol1-sec924-11.xml

Appendix I. MIRE Data Model Entity-Relationship Diagrams

Intersection Entity-Relationship Diagram

.
Intersection
INTERSECTHIN TRAFFIC CONTROL TYPE INTERSECTION TYPE
INTERSECTION TYPE ID
INTERSECTION TYPE NAME
ADDITIONAL ROAD CROSSING POINT LOCATION 1D
INTERSECTION GEOMETRY TYPE
INTERSECTION GEOMETRY TYPE ID SCHOOL ZONE INDICATOR FLAG
INTERSECTION GEOMETRY TYPE NAME N

CIRCULAR INTERSECTION BICYCLE FACILITY TYPE ID (FK}

INTERSECTION SIGHALIZATION TYPE
INTERSECTION SIGNALIZATION TYPE ID

I

I

I

I

]

I

I
CIRCULAR INTERSECTION BICYCLE FACILITY TYPE
CIRCULAR INTERSECTION BICYCLE FACILITY TYPE ID

CIRCULAR INTERSECTION BICYCLE FACILITY TYPE

Figure 43. Intersection Entity-Relationship Diagram in MIRE Data Model.

‘[I9poW eleq JYIN ul weibeiq diysuoneay-Auyug 697 uondasidiu| ‘i 24nbi4

| odau senen e asanioasonusd vouTInas wroes | | 00 S OO N SOy |

Tedd | VY i) phee T MWL I T A T e E!i

weibeiq diysuone|ay-Aypug 637 uoidasialu|

‘|9pOIN ele@ JYIW ul wesbelq diysuonie|ay-A1ug Juswbas g ainbiy

uuuuuuuuuuuuuuuuu el L NORLYIED HOLLOTMI NGNS
0 Sk b O WD) MWL I NN
Filk | NOAIVEIA0 NCHL SHED L NIRT3S
||||||||||||||||||||||||||||||||| EE—.E«!E
||||||||||||||||||||||| FAH S 0 IR NYIISR
Ll T NI
WAL AR TR A At WEl OSSO D Wil i.!!ii AALE WA WA
RPN Bl] OSSO NN BTN Bl WECTWRG [HE
Bl HSAOF50MI NN | 0 3L WIS Lot |
BAh WIADS SO HNIIIN FAh L IS L

weibeiq diysuonepy-A33ug yuswbasg

"|ISPON e3eq FHIW ul wesbelq diysuone|ay-A1uz Juswbas ‘(panunuod) sy ainbiy

11111111111111111111111111111111

IIIIIIIIIIIIIIIIIIIIII

...

e 00 3l ALIEDWA T

AN LINTY O35 WONRA | BN 3okt 3RS
W LN 033 TdAL TG
ML Bk RN L4) 0 e WL R TN LN I,
0 3L RS L | ALLLNYIO S04 b4¥IEL A TN
Bl HRTWICHS LT ALILNNO ST R0

ALK ML F o L0 W 3 B A) L

Ramp Entity-Relationship Diagram

Ramp

ENIERG RAMP TERMINAL ROAIWAY FEATIRE TYFE

FAMP METERING TYPE
[Rane wETERNG TrPE ID
AN METERING TYPE

EMDING FAMP TERMINAL ROADWAY FEATURE TWEID
ENDIMG RANF TERMNAL ROADWAY FEATURE TYFE :

ENLUHG FAMP TERMBLAL HELATIVE MAINLANE TYFE
ENDANG FAMP TERMMAL RELATIVE MARLANE TYPE 0
EHOMG RAMP TERMMAL RELATTVE MABLANE TYPE

Figure 46. Ramp Entity-Relationship Diagram in MIRE Data Model.

Interchange Entity-Relationship Diagram

f nterchange

INTERCHANGE LIGHTING TYPE
INTERCHANGE LIGHTING TYPE ID

INTERCHANGE
UNIQUE INTERCHANGE ID

ROAD1 CROSSING POINT LOCATION ID

ROAD2 CROSSING POINT LOCATION ID
ADDITIONAL ROAD CROSSING POINT LOCATION ID
INTERCHANGE TYPE ID (FK)

Figure 47. Interchange Entity-Relationship Diagram in MIRE Data Model.

Horizontal Curve Entity-Relationship Diagram

Horizontal Curve
HORIZONTAL CURVE DIRECTION TYPE
HORIZONTAL CURVE DIRECTION TYPE ID

HORIZONTAL CURVE DIRECTION TYPE NAME

HORIZONTAL CURVE FEATURE TYPE
HORIZONTAL CURVE FEATURE TYPE ID

HORIZONTAL CURVE FEATURE TYPE

A

HORIZONTAL CURVE
HORIZONTAL CURVE ID

HORIZONTAL CURVE FEATURE TYPE ID (FK)
~C< HORIZONTAL CURVE DEGREE MEASUREMENT
HORIZONTAL CURVE LENGTH MEASUREMENT
CURVE SUPERELEVATION MEASUREMENT
HORIZONTAL TRANSITION CURVE TYPE ID
HORIZONTAL CURVE DEFLECTION ANGLE

I
I
1
|
|
L

HORIZONTAL CURVE DIRECTION TYPE ID (FK)

HORIZONTAL TRANSITION CURVE TYPE
HORIZONTAL TRANSITION CURVE TYPE ID

HORIZONTAL TRANSITION CURVE TYPE

Figure 48. Horizontal Curve Entity-Relationship Diagram in MIRE Data Model.

Vertical Grade Entity-Relationship Diagram

'Vertical Grade

VERTICAL ALIGNMENT FEATURE TYPE
VERTICAL ALIGNMENT FEATURE TYPE ID

Figure 49. Vertical Grade Entity-Relationship Diagram in MIRE Data Model.

Appendix ll. Safety Analyst Data Model Entity-Relationship Diagrams

The output of the RDE tool is intended to be used with safety analysis tools such as the Highway

Safety Manual (HSM), the Interactive Highway Safety Design Model, and AASHTOWare Safety Analyst.
The MIRE-MIS pilot implementation focused on Safety Analyst as a potential tool for analyzing data
produced by the RDE tool because it was requested by the NHDOT. Two of the pilot states in the RDETAP
project are also exploring potential uses of the RDE Tool data output for safety analysis programs.

Safety Analyst uses spatially referenced data and is data intensive. The RDE tool is able to support the
specific and extensive data requirements of Safety Analyst. However, as mentioned above, the RDE tool
was designed to supply data for any common safety analysis tool. Accordingly, a transportation agency
using a less data intensive safety analysis tool would simply disregard (or delete) specific attribution
required by Safety Analyst.

Safety Analyst defines attribution for the main MIRE data entities, specifically intersections, intersection
legs, segments, and ramps. This appendix shows the complete model and related look-up tables.

To make the RDE tool fully compatible with the requirements of states implementing Safety Analyst, the
researchers reviewed domain values for all elements in both MIRE and Safety Analyst data models and
developed compatible geodatabase templates.

Segment

segmentlD

agencylD
routeDisplayMame
agencySiteSubtype
siteSubTypeEnum
comment

location
endLocation

gislD

geographiclD
nextSegmentlD
previousSegmentiD
nextintersection|D
previousIntersectionlD
segmentLength
terrain
roadwayClass1
roadwayClass2
roadwayClass3
numThruLaneTotal
medianType1
medianType2
medianWidth
accessControl
drivewayDensity
growthFactor
growthSource
maxAADT
postedSpeed
operationWay
travelDirection
increasingMilesposts
interchangelnfluence
discontinuity
openedToTraffic
lastMajorRecon
parentHSID
childHSIDs
accidentCount
invalid

accesskey

Intersection Leg
intersection|D intersectionlD
agencylD legiD
routeDisplayName segmentlD
agencySite Subtype prePostProcessSegmentlD
siteSubTypeEnum legType
comment location
location influenceZone
gislD legDirection
geographiclD legMumThruLane
majorReadDirection legMumLeftiTumLane
minorReadName legMumRightTumlLane
minorLocation legMedianType
majBegininfluenceZone leftTumPhasing
minBegininfluenceZone postedSpeed
majEndlinfluenceZone turnProhibitions
minEndlnfluenceZone operationWay
intersectionType1 comment
intersectionType2
trafficControl
offsetintersection
offsetDistance
growthFactor
growthSource
maxAADT
openedToTraffic
lastMajorRecon
accidentCount
invalid
accessKey

Figure 50. Main Entities in Safety Analyst Data Model.

Ramp

ramplD

agencylD
routeDisplayName
agencySiteSubtype
siteSubTypeEnum
comment

location
endLocation

gislD

geographiclD

ramp Type
rampConfiguration
rampFromlD
rampTolD
rampFreewayConnection
rampCrossroadConnection
numOfLanes
rampLength
growthFactor
growthSource
maxAADT
openedToTraffic
lastMajorRecon
accidentCount
invalid

accessKey

Intersection Entity-Relationship Diagram

Offsetintersection

IntersectionType1

IntersectionType1_ID

intersectionType1_Nm
intersectionType1_Dscr

M
Intersection

Offsetintersection_ID

intersectionlD

offsetintersection_Cd
offsetintersection_Nm
offsetintersection_Dscr

MajorRoadDirection
MajorRoadDirection_ID

majorRoadDirection_Cd
majorRoadDirection_Nm

majorRoadDirection_Dscr

Invalidintersection

Invalidintersection_ID

invalidintersection_Cd
invalidintersection_Nm

agencylD
routeDisplayName
agencySiteSubtype
siteSubTypeEnum
comment

location

gislD

geographiclD
majorRoadDirection (FK)
minorRoadName
minorLocation
majBegininfluenceZone
minBegininfluenceZone
majEndinfluenceZone
minEndinfluenceZone
intersectionType1 (FK)
intersectionType2 (FK)
trafficControl1 (FK)
offsetintersection (FK)
offsetDistance
growthFactor
growthSource

maxAADT
openedToTraffic
lastMajorRecon
accidentCount

invalid (FK)

accessKey

invalidintersection_Dscr

TrafficControl1

TrafficControl1_ID

trafficControl1_Nm
trafficControl1_Dscr

IntersectionType2

IntersectionType2_ID

intersectionType2_Nm
intersectionType2_Dscr

Figure 51. Intersection Entity-Relationship Diagram in Safety Analyst Data Model.

Intersection Leg Entity-Relationship Diagram

LegType

LegType_ID

legType_Nm
legType_Dscr

Leg

TurnProhibitions
TurnProhibitions_ID

intersectionlID
leglD

turnProhibitions_Nm
turnProhibitions_Dscr

LegDirection
LegDirection_ID

legDirection_Cd
legDirection_Nm
legDirection_Dscr

segmentlD
prePostProcessSegmentID
legType (FK)

location

influenceZone
legDirection (FK)
legNumThruLane
legNumLeftTurnLane
legNumRightTurnLane
legMedianType (FK)
leftTurnPhasing (FK)
postedSpeed
turnProhibitions (FK)
operationWay (FK)
comment

LeftTurnPhasing

OperationWay
OperationWay_ID
--C
operationWay_Nm
operationWay_Dscr
LegMedianType

LegMedianType_ID

LeftTurnPhasing_ID

leftTurnPhasing_Nm
leftTurnPhasing_Dscr

legMedianType_Nm
legMedianType_Dscr

Figure 52. Intersection Entity-Relationship Diagram in Safety Analyst Data Model.

Segment Entity-Relationship Diagram

Interchangelnfluence MedianType2
Interchangeinfluence_ID MedianType2_ID
interchangelnfluence_Cd medianType2_Cd

interchangelnfluence_MNm
interchangelnfivence_Dscr

TravelDirection Segment

medianType2_Nm
medianType2_Dscr

===

IncreasingMilesposts

TravelDirection_ID segmentiD

IncreasingMilesposts_ID

| agencylD
routeDisplayName
agencySiteSubtype
siteSubTypeEnum
comment

location
endLocation

gislD

geographiciD
nextSegmentiD
previousSegmentiD
nextintersectionlD

travelDirection_Cd
traveiDirection_Nm
travelDirection_Dscr

AccesaControl
AccessControd_ID

accessControl_Nm
accessControl_Dser

sagmeniLength
terrain (FK)
roadwayClass1 (FK)
roadwayClass2 (FK)
roadwayClass3 (FK)
numThruLaneTaotal
medianType1 (FK)
medianType2 (FK)
medianyVidth
accessControl (FK)
drivewayDensity
growthFactor

| growthSource
maxAADT
postedSpeed
operation'Way
travelDiraction (FK)

Terrain

discontinuity (FK)

MedianType1
MedianType1_ID

medianType1_Nm
medianType1_Dscr

invalid (FK)
accesskey

previousintersectionlD

increasingMilesposts (FK)
interchangeinfluence (FK)

increasingMilesposts_Cd
increasingMilespasts_Nm
increasingMilesposts_Dscr

RoadwayClass1
RoadwayClass1_|D

roadwayClass1_Nm
roadwayClass1_Dscr

Discontinuity
Discontinuity_IDv
discontinuity_Cd
discontinuity_Nm
discontinuity_Dser

___C_

RoadwayClass3
RoadwayClass3_ID

roadwayClass3_Nm
roadwayClass3_Dscr

RoadwayClass2 InvalidSegment
FRoadwayClass2_ID InvalidSegment_ID
roadwayClass2 Nm InvalidSegment_Cd
roadwayClass2_Dscr InvalidSegment_Nm

Figure 53. Segment Entity-Relationship D

03)

invalidSegment_Dscr

iagram in Safety Analyst Data Model.

Ramp Entity-Relationship Diagram

RampType
RampType_ID

rampType_Nm
rampType_Dscr

Ramp

ramplD
RampConfiguration RampFreewayConnection

RampConfiguration_ID agencylD

DisplayName § RampFreewayConnection_ID
rampConfiguration_MNm

agencySiteSubtype
rampConfiguration_Dscr

rampFreewayConnection_Nm
rampFreewayConnection_Dscr

siteSubTypeEnum

comment

location

endLocation

gisiD

geographiclD

rampType (FK)
rampConfiguration (FK)
rampFromiD

rampTolD
rampFreewayConnection (FK)
rampCrossroadConnection (FK)
numQOfLanes

rampLength

growthFactor
RampCrossroadConnection growthSource (FK)

RampCrossroadConnection_|D maxAADT

openedToTraffic
rampCrossroadConnection_Nm lastMajorRecon
rampCrossroadConnection_Dscr accidentCount
invalid
accessKey

GrowthSource
GrowthSource_ID

“— growthSource_Cd
growthSource_Nm
growthSource_Dscr

Figure 54. Ramp Entity-Relationship Diagram in Safety Analyst Data Model.

Appendix lll. Feature Class Templates for Output Geodatabase

Generic Asset Node Template

Table 16. Generic Asset Node Template.

Field Name Data Type

OBJECTID Object ID
SHAPE Geometry
agencylD Text
POINT_X Double
POINT_Y Double
NodelD Long Integer
Count of Records 30,368

Generic Intersection Template

Table 17. Generic Intersection Template.

Field Name Data Type

agencylD Text
intersectionID Long Integer
routeDisplayName Text
agencySiteSubtype Text
siteSubTypeEnum Text
comment Text
location Text
gisiD Text
geographiclD Text
majorRoadDirection Text
minorRoadName Text
minorLocation Text
majBegininfluenceZone Double
minBeginInfluenceZone Double
majEndInfluenceZone Double
minEndInfluenceZone Double
intersectionTypel Text
intersectionType2 Text
trafficControl1 Text
offsetintersection Text
offsetDistance Double

Table 17. Generic Intersection Template (continued).

Field Name Data Type

growthFactor Double
growthSource Text
maxAADT Double
openedToTraffic Date
lastMajorRecon Date

accidentCount

Long Integer

Invalid Text
accessKey Text
UNIQ_JNCT_ID Long Integer

INTSECT_TYPE

Text

ROAD1_CRSNG_PNT_LOCN_ID

Long Integer

ROAD2_CRSNG_PNT_LOCN_ID

Long Integer

ADDL_RD_CRSNG_PNT_LOCN_ID

Long Integer

INTSECT_LEG_QTY

Short Integer

INTSECT_GMTRY_TYPE

Text

SCHL_ZN_INDCTR_FLG

Text

RR_CRSNG_NBR

Short Integer

INTSECT_ANG_MS Float
INTSECT_OFFST_DSTNCE_MS Double
INTSECT_TRFC_CTRL_TYPE Text
SGNLN_TYPE Text
INTSECT_LTG_FLG Text

CIRC_INTSECT_LN_QTY

Short Integer

CIRC_INTSECT_LN_WIDTH_MS Double
CIRC_INTSECT_INSCR_DIA_MS Double
CIRC_INTS_BICY_FCLTY_TYPE Text
Status Text
Verified Text

Generic IntersectionLeg Template

Table 18 Generic Intersection Leg Template.

Field Name Data Type

intersectionID

Long Integer

leglD Long Integer
legType Text
location Text
influenceZone Float
legDirection Text
legNumThruLane Short Integer
legNumLeftTurnLane Short Integer
legNumRightTurnLane Short Integer
legMedianType Text
leftTurnPhasing Text
postedSpeed Short Integer
turnProhibitions Text
operationWay Text
comment Text
INTSECT_ID Text
UNIQ_APRCH_ID Long Integer

APRCH_AADT_QTY

Long Integer

APRCH_AADT_YR_NBR

Long Integer

APRCH_MODE

Text

APRCH_DRCT_FLOW_TYPE

Text

APRCH_THRGH_LN_QTY

Short Integer

APRCH_LT_TURN_LN_TYPE

Text

APRCH_EXCLV_LT_TURN_LN_QTY

Short Integer

APRCH_LT_TURN_LN_OFFST_MS Double
APRCH_RT_TURN_CHNLZ_TYPE Text
EXC_RT_TRN_LN_TRF_CTR_TYPE Text

EXCLV_RT_TURN_LN_QTY

Short Integer

EXCLV_LT_TURN_LN_LNGTH_MS Double
EXCLV_RT_TURN_LN_LNGTH_MS Double
APRCH_MDN_TYPE Text

Table 18 Generic Intersection Leg Template (continued).

Field Name Data Type

APRCH_TRFC_CTRL_TYPE Text
APRCH_LT_TURN_PROT_TYPE Text
SGNL_PROG_TYPE Text
APRCH_CRSWLK_TYPE Text
APRCH_PED_SGNLN_TYPE Text
APR_PED_SGN_SPCL_FEAT TYPE Text

APRCH_CRSNG_PED_QTY

Short Integer

APRCH_LT_RT_TURN_PRHB_TYPE

Text

APR_RT_TRN_ON_RED_PRH_TYPE

Text

APRCH_LT_TURN_QTY

Short Integer

APRCH_LT_TURN_CNT_YR_NBR

Date

APRCH_RT_TURN_QTY

Short Integer

APRCH_RT_TURN_CNT_YR_NBR Date
APRCH_TRNSVRS_RMBL_STRP_FLG Text
CIRC_INTS_APRCH_ENTRY_WIDTH Double

CIRC_INTS_APRCH_ENTRY_LN_QTY

Short Integer

CIR_IN_AP_EX_RT_TN_LN_TYPE Text
CIRC_INTS_APRCH_ENTRY_RAD_MS Double
CIRC_INTS_APRCH_EXIT_WIDTH_MS Double

CIRC_INTS_APRCH_EXIT_LN_QTY

Short Integer

CIRC_INTS_EXIT_RAD_MS Double
CIRC_INTS_PED_FCLTY_TYPE Text
CIRC_INTS_APR_CRSWLK_LOCN_MS Double
CIRC_INTS_APRCH_ISLND_WIDTH_MS Double
APRCH_SKEW_ANG_MS Float
RURL_URB_DSGNT Text
RDWAY_OWNR Text
Verified Text

Generic Ramp Template

Table 19. Generic Ramp Template.

Field Name Data Type

agencylD Text

ramplD Text
routeDisplayName Text
agencySiteSubtype Text
siteSubTypeEnum Text
comment Text
location Text
endLocation Text

gisiD Text
geographiclD Text
ramplype Text
rampConfiguration Text
rampFrom|D Text
rampTolD Text
rampFreewayConnection Text
rampCrossroadConnection Text
numOflLanes Short Integer
ramplLength Double
growthFactor Double
growthSource Text
maxAADT Long Integer
openedToTraffic Date
lastMajorRecon Date
accidentCount Long Integer
invalid Text
UNIQ_RAMP_ID Text
UNIQ_INTCHG_ID Text
RAMP_LNGTH_MS Double
RAMP_ACCEL_LN_LNGTH_MS Double
RAMP_DECEL_LN_LNGTH_MS Double
RAMP_LN_QTY Short Integer
RAMP_AADT_QTY Long Integer

Table 19. Generic Ramp Template (continued).

Field Name Data Type

RAMP_AADT_YR_NBR Long Integer
RAMP_METER_TYPE Text
RAMP_ADVRY_SPD_LMT_NBR Short Integer
BEGN_RAMP_TRMN_RDWY_TYPE Text
BEGN_RAMP_TRMN_RDWY_FEAT_TYPE Text
BEGN_RAMP_TRMN_RDWY_LOCN_ID Text
BEGN_RAMP_TRMN_RLTV_MNLN_TYPE Text
END_RAMP_TRMN_RDWY_TYPE Text
END_RAMP_TRMN_RDWY_FEAT_TYPE Text
END_RAMP_TRMN_RDWY_LOCN_ID Text
END_RAMP_TRMN_RLTV_MNLN_TYPE Text
GOVTL_OWNR_TYPE Text
FUNC_CLASS_TYPE Text
Verified Text

Generic Roadway Segment Template

Table 20. Generic Segment Template.

Field Name Data Type

agencylD Text
segmentlD Text
routeDisplayName Text
agencySiteSubtype Text
siteSubTypeEnum Text
comment Text
location Text
endLocation Text
gisiD Text
geographiclD Text
nextSegmentlD Text
previousSegment|D Text
nextlntersectionlD Text
previouslintersectionlD Text
segmentlLength Double
terrain Text
roadwayClass! Text
roadwayClass2 Text
roadwayClass3 Text
numThrulaneTotal Short Integer
medianTypel Text
medianType2 Text
medianWidth Double
accessControl Text
drivewayDensity Double
growthFactor Double
growthSource Text
maxAADT Double
postedSpeed Double
operationWay Text
travelDirection Text
increasingMilesposts Text
interchangelnfluence Text
discontinuity Text
openedToTraffic Date

Table 20. Generic Segment Template (continued).

Field Name Data Type

lastMajorRecon Date
parentHSID Text
childHSIDs Text
accidentCount Long Integer
invalid Text
accessKey Text
CNTY_NM Text
CNTY_CD Text
HWY_DIST_NBR Text
GOVTL_OWNR_TYPE Text
SPECF_GOVTL_OWNR_NM Text
LCL_JURIS_NM Text
LCL_JURIS_URB_CD Text
RTE_NBR Text
RTE_NM Text
SGMNT_BEG_PNT_MS Double
SGMNT_END_PNT_MS Double
RTE_SIGN_TYPE Text
RTE_SIGN_QLFY_TYPE Text
COCDN_RTE_TYPE Text
COCDN_RTE_MINR_RTE_NBR Text
DRCT_OF_INV Text
RURL_URB_DSGNT Text
FEDRL_AID_RTE_TYPE Text
SRFC_TYPE Text
TOTL_PVD_SRFC_WIDTH_MS Double
SRFC_FRCT_MS Double
SRFC_FRCT_MS_DT Date
PVMT_RGHNS_MS Double
PVMT_RGHNS_MS_DT Date
PRSNT_SRCVB_RTNG_CD Text
PRSNT_SRCVB_RTNG_DT Date
THRGH_LN_QTY Short Integer
OUTSD_THRGH_LN_WIDTH_MS Double
INSD_THRGH_LN_WIDTH_MS Double

Table 20. Generic Segment Template (continued).

Field Name Data Type

LN_CROSS_SLP_MS Double
AUX_LN_TYPE Text
AUX_LN_LNGTH_MS Double
HOV_LN_TYPE Text
HOV_LN_QTY Short Integer
CROSS_LN_QTY Short Integer
BICY_FCLTY_TYPE Text
BICY_FCLTY_WIDTH_MS Double
PEAK_PER_THRGH_LN_QTY Short Integer
RT_SHLDR_TYPE Text
RT_SHLDR_TOTL_WIDTH_MS Double
RT_PVD_SHLDR_WIDTH_MS Double
RT_SHLDR_RMBL_STRP_TYPE Text
LT_SHLDR_TYPE Text
LT_SHLDR_TOTL_WIDTH_MS Double
LT_PVD_SHLDR_WIDTH_MS Double
LT_SHLDR_RMBL_STRP_TYPE Text
SDWALK_TYPE Text
CURB_PRSC_TYPE Text
CURB_TYPE Text
MDN_BARR_TYPE Text
MDN_INNER_PVD_SHLDR_WIDTH_MS Double
MDN_SHLDR_RMBL_STRP_TYPE Text
MDN_SDSLP_MS Double
MDN_SDSLP_WIDTH_MS Text
MDN_CRSOVR_LN_TYPE Text
RDSD_CLEARZN_WIDTH_MS Double
RT_SDSLP_MS Double
RT_SDSLP_WIDTH_MS Double
LT_SDSLP_MS Double
LT_SDSLP_WIDTH_MS Double
RDSD_RTNG_CD Text
MAJR_COML_DRWY_QTY Short Integer
MINR_COML_DRWY_QTY Short Integer
MAJR_RESD_DRWY_QTY Short Integer

Table 20. Generic Segment Template (continued).

Field Name Data Type

MINR_RESD_DRWY_QTY

Short Integer

MAJR_IND_INSTNL_DRWY_QTY

Short Integer

MINR_IND_INSTNL_DRWY_QTY

Short Integer

OTHR_DRWY_QTY

Short Integer

SGMNT_SGNLZ_INTSECT_QTY

Short Integer

SGMNT_STP_CTRLD_INTSECT_QTY

Short Integer

SGMNT_UNCTRL_OTHR_INTSECT_QTY

Short Integer

AADT_QTY_YR_NBR

Long Integer

AADT_ANNL_ESCAL_PCT

Short Integer

SUT_PCT Short Integer
COMBN_TRCK_PCT Short Integer
TRCK_PCT Short Integer
TOTL_DAILY_TWO_WAY_PED_QTY Long Integer
BICY_QTY Long Integer

MTRCYCL_QTY

Long Integer

HRLY_TRFC_VOL_QTY

Long Integer

K_FCTR_PCT

Short Integer

DRCTL_FCTR_NBR

Long Integer

TRCK_SPD_LMT_NBR

Short Integer

NGTME_SPD_LMT_NBR

Short Integer

EIGHTY_FIFTH_PCTL_SPD_NBR

Short Integer

MEAN_SPD_NBR

Short Integer

SCHL_ZN_INDCTR_FLG Text
ON_ST_PRKG_PRSC_TYPE Text
ON_ST_PRKG_TYPE Text
RDWAY_LTG_TYPE Text
TOLL_FCLTY_TYPE Text
EDGLN_WIDTH_MS Double
CNTRLN_WIDTH_MS Double
CNTRLN_RMBL_STRP_TYPE Text

PASS_ZN_PCT Short Integer
BRDG_NBR Text
Verified Text

Appendix IV. Python Script Calculate Intersection Angle

import arcpy

import math

from arcpy import env

def getWorkspaceFromPath(aPath):
lastSlash = aPath.rfind(‘'.gdb’)
workspace = aPath[:lastSlash + 4]

return workspace

def findMinAngle(InputTable,outputTable):
whereClause = “NodeID > 0 And NodelD <= 2”
whereClause = ‘'
spatialReference=
fields = “LegID, LegAngle, NodeID “
sort fields = “NodeID”

rows = arcpy.SearchCursor(InputTable, whereClause,
spatialReference, fields ,sort fields)

print “Leg table OPEN SUCCESSFUL”
outputRows = arcpy.InsertCursor(outputTable)
#print “outputPrmts OPEN SUCCESSFUL”
maxLegNum = 8

curNodeID = “0”

o

legIndex =

arLegAngle = [1 for x in range(maxLegNum)]

bFirstTime = True

mtLegAngle = [[1 for x in range(maxLegNum)] for y in range(
maxLegNum)]

mtLegAngle[l][1] = 1

iLegCount = 0

isNewNode = False

for row in rows:
NodeID = row.NodelID
LegID = row.LegID
LegAngle = int(float(row.LegAngle))
if NodeID != curNodelD:

INTSECT ANG MS =

iLegCount)

MS)

else:

if not bFirstTime:

#printArr(arLegAngle,

iLegCount)

calculatelegAngles(arLegAngle,mtLegAngle,

updateOutput (outputRows,curNodeID, INTSECT ANG

curNodeID = NodeID
legIndex =1
isNewNode = True
bFirstTime = False
iLegCount = 1
arLegAngle[legIndex] = LegAngle
same NodeID

legIndex = legIndex + 1
#arLegAngle.append(Angle)
arLegAngle[legIndex] = LegAngle

iLegCount = iLegCount + 1

if isNewNode:

#print “NodelID =
“.format (NodelID,LegID, Angle,

#printArr(arLegAngle,

#print “\nNew Node %s” % NodelD

isNewNode = False

{0},LegID ={1},Angle={2},1legIndex={3},iLegCount= {4}:
legIndex, iLegCount)

iLegCount)

e

#Out of for loop, calculate the last time

INTSECT ANG MS = calculatelLegAngles(arLegAngle,mtLegAngle,
iLegCount)

updateOutput (outputRows,NodeID, INTSECT ANG MS)

#arcpy.Delete management(InputTable)

def updateOutput(outputRows,NodeID,INTSECT ANG MS):
newRow = outputRows.newRow ()
newRow.IntersectionID = NodelD
newRow.INTSECT ANG MS = INTSECT ANG MS

outputRows.insertRow(newRow)

def calculatelegAngles(arLegAngle,mtLegAngle, iLegCount):
#print “Inside calculatelLegAngles function”
for iRow in range(l, iLegCount + 1):
#mtLegAngle.append([]) # append new row
for iCol in range(l, iLegCount + 1):
if iRow < iCol:
mtLegAngle[iRow][iCol] = (abs(arLegAngle[iRow] - arLegAngle[iCol])) #
append new col
if mtLegAngle[iRow][iCol] > 180:
mtLegAngle[iRow][iCol] = 360 - mtLegAngle[iRow][iCol]
#print mtLegAngle[iRow][iCol],
#else:
#print “7,

#print (\\//)

minAngle = 360
for iRow in range(l , iLegCount + 1):
for iCol in range(l, iLegCount + 1):

if mtLegAngle[iRow][iCol] > 0 and mtLegAngle[iRow][iCol] < minAngle and
iRow < 1iCol:

minAngle = mtLegAngle[iRow][iCol]

if minAngle > 90:
minAngle = minAngle - 90
print “Min Angle: “, minAngle

return minAngle

def printArr(myArr, iLegCount):
for iRow in range(l, iLegCount + 1):

print myArr[iRow]

def deleteAllFieldsExcept(inputDS, fieldsToKeep):
print(‘deleteAllFieldsExcept’)

allFields = arcpy.ListFields(inputDS)

fieldsToDelete = []
for field in allFields:
if field.name not in fieldsToKeep:
fieldsToDelete.append(field.name)

print (M0} “.format(field.name))

if fieldsToDelete:

arcpy.DeleteField management(inputDS, fieldsToDelete)

return

def copyTable(featClassLayer, intsectTbl, intsectFieldsToKeep):

env.workspace = workspace
if arcpy.Exists(intsectTbl):

arcpy.Delete management(intsectTbl)

arcpy.CopyRows management (featClassLayer,

intsectTbl

deleteAllFieldsExcept(intsectTbl, intsectFieldsToKeep)

108

return intsectTbl

def joinWithIntsect(intersectionFC, intsectTbl):

arcpy.AddIndex management (intsectTbl, ‘intersectionID’,
‘intsectTbl intsectID Idx’, ‘UNIQUE’,’ASCENDING’)

arcpy.AlterField management (intsectTbl, ‘INTSECT ANG _
MS’,”"INTSECT ANG MS2’,"INTSECT ANG MS2')

intsectLayer = intersectionFC + ' Lyr’

arcpy.MakeFeatureLayer management (intersectionFC, intsectLayer)

arcpy.AddJoin management(intsectLayer,’intersectionID’,intsectTbl,
‘intersectionID’,’KEEP COMMON’)

expression = “getIntsectAngle(!INTSECT ANG Ms2!)”
codeBlock = “”def getIntsectAngle(INTSECT ANG MS2):

return INTSECT ANG MS2

\\rrrr

arcpy.CalculateField management (intsectLayer, ‘INTSECT ANG MS’,
expression, “PYTHON 9.3”, codeBlock)

arcpy.RemoveJoin management(intsectLayer)
return True
intsectFieldsToKeep = [‘OBJECTID’,’intersectionID’,”INTSECT ANG MS’]
legCentroidTbl = arcpy.GetParameterAsText(0)
intsectTemplate = arcpy.GetParameterAsText (1)
intsectTablePath = arcpy.GetParameterAsText(2)

workspace = getWorkspaceFromPath(intsectTablePath)

intsectTbl = copyTable(intsectTemplate, intsectTablePath,

09

ROADWAY DATA EXTRACTION TOOL — IMPLEMENTATION AND PROGRAMMING GUIDE

intsectFieldsToKeep)

LegCount = arcpy.GetCount management(legCentroidTbl)

iLegCount = int(LegCount.getOutput(0))

if iLegCount > O:

findMinAngle(legCentroidTbl, intsectTablePath)

arcpy.SetParameter(3, intsectTbl)

For More Information:
http://safety.fhwa.dot.gov

FHWA, Office of Safety

Robert Pollack
Robert.Pollack@dot.gov
(202) 366-5019

Q

US.Department of Transportation
Federal Highway Administration

Safe Roads for a Safer Future

Investment in roadway safety saves lives

December 2016

FHWA-SA-17-028
http://safety.fhwa.dot.gov

	_GoBack
	_Ref410639291
	_Ref461807479
	_Ref461807480
	_Ref461807484
	_Ref464739418
	_Ref465088631
	_Ref465091326
	_Ref465092519
	_Ref465169313
	_Ref465242357
	_Ref465242160
	_Ref465242131
	_Ref465244203
	_Ref465244729
	_Ref465245929
	_Ref465246153
	_Ref465082958
	_Ref465255761
	_Ref465256473
	_Ref465256765
	_Ref465256941
	_Ref465432168
	_Ref465436721
	_Ref465259885
	_Ref465339310
	_Ref465338987
	_Ref465339792
	_Ref463359701
	_Ref464813084
	_Ref463419202
	_Ref463362622
	_Ref465263031
	_Ref465263914
	_Ref465693637
	_Ref465693893
	_Ref465694212
	_Ref465765334
	_Ref465407496
	_Ref465409303
	_Ref430612681
	_Ref465413742
	_Ref465413748
	_Ref468347002
	_Ref468360948
	_Ref468353180
	_Ref468353279
	_Ref468367032
	_Ref468354091
	_Ref468354158
	_Ref468362696
	_Ref468362769
	_Ref468369060
	_Ref468371742
	_Ref468371748
	_Ref412194017
	_Ref412192820
	_Ref412551174
	_Ref413422526
	_Ref462064063
	_Ref468433461
	_Ref463526723
	_Ref412193873
	_Ref413422616
	_Ref462997542
	_Ref461801144
	_Ref461808328
	_Ref463601580
	1. Introduction
	Background
	RDETAP Development
	Purpose of the Guide
	Organization of the Guide

	2. Model Inventory of Roadway Elements
	Fundamental Data Elements
	MIRE Data Model

	3. Description of RDE Tool and Data Management Process
	RDE Tool Components
	RDE Tool Data Management Process
	System Requirements

	4. RDE Tool Geodatabases
	InputData Geodatabase
	IntermediateData Geodatabase
	InternalData Geodatabase
	MIREProject Geodatabase
	UpdateFeature Geodatabase

	5. RDE Tool Toolboxes and Scripts
	Create Business Process
	Update Features Business Process
	Retire Intersection Features Business Process
	Script Calculate Intersection Angle

	6. RDE Tool Addin
	Code Structure
	XML Configuration File
	Use of MIRE Toolbar

	7. RDE Tool Modification Instructions
	Recommended Process to Implement the RDE Tool
	Changes to RDE Tool Data Model
	Changes to RDE Tool Geodatabases
	Changes to RDE Toolboxes
	Changes to RDE Tool Toolbar

	8. Case Study: Implementation of RDE Tool at Washington State DOT
	Form Implementation Team
	Establish Goals and Objectives in General Terms
	Conduct Implementation Team Workshop
	Develop RDE Tool Modification Plan, Timeline, and Milestones
	Conduct Implementation Team Meetings (Webinars) at Milestones
	RDE Tool Modifications
	Outlook and Lessons Learned

	9. Case Study: Implementation of RDE Tool at Missouri State DOT
	Form Implementation Team
	Establish Goals and Objectives in General Terms
	Conduct Implementation Team Workshop
	Develop RDE Tool Modification Plan, Timeline, and Milestones
	Conduct Implementation Team Meetings (Webinars) at Milestones
	RDE Tool Modifications
	Outlook and Lessons Learned

	10. Concluding Remarks
	11. References
	Appendix I. MIRE Data Model Entity-Relationship Diagrams
	Intersection Entity-Relationship Diagram
	Intersection Leg Entity-Relationship Diagram
	Segment Entity-Relationship Diagram
	Ramp Entity-Relationship Diagram
	Interchange Entity-Relationship Diagram
	Horizontal Curve Entity-Relationship Diagram
	Vertical Grade Entity-Relationship Diagram

	Appendix II. Safety Analyst Data Model Entity-Relationship Diagrams
	Intersection Entity-Relationship Diagram
	Intersection Leg Entity-Relationship Diagram
	Segment Entity-Relationship Diagram ..
	Ramp Entity-Relationship Diagram

	Appendix III Feature Class Templates for Output Geodatabase
	Generic Asset Node Template
	Generic Intersection Template
	Generic IntersectionLeg Template
	Generic Ramp Template
	Generic Roadway Segment Template

	Appendix IV. Python Script Calculate Intersection Angle
	Table 1. Categories and Subcategories of MIRE Elements.
	Table 2. MIRE Fundamental Data Elements and MIRE Data Element Number
for Non-Local* Paved Roads (3).
	Table 3. MIRE Fundamental Data Elements and MIRE Data Element Number for Local* Paved Roads (3).
	Table 4. MIRE Fundamental Data Elements and MIRE Data Element Number for Unpaved* Roads (3).
	Table 5. List of Tables with Defined Domain Values.
	Table 5. List of Tables with Defined Domain Values (continued).
	Table 5. List of Tables with Defined Domain Values (continued).
	Table 6. WSDOT RDE Tool Pilot Implementation Timeline.
	Table 7. MoDOT RDE Tool Pilot Implementation Timeline.
	Table 8. MoDOT Input Files Included in Data Integration Review.
	Table 9. Overview of MoDOT Feature Class SS_PAVEMENT_CURRENT.
	Table 10. Data Extraction Mapping for SS_PAVEMENT_CURRENT Feature Class.
	Table 11. List of Local Transportation Agency Input Files Included in Data Integration Review.
	Table 12. Overview of City of Springfield Feature Class street.
	Table 13. Data Extraction Mapping for City of Springfield street Feature Class.
	Table 14. Overview of St. Louis County Feature Class Traffic_Counts.
	Table 15. Data Extraction Mapping for St. Louis County Traffic_Counts Feature Class.
	Table 16. Generic Asset Node Template.
	Table 17. Generic Intersection Template.
	Table 18 Generic Intersection Leg Template.
	Table 19. Generic Ramp Template.
	Table 20. Generic Segment Template.
	Figure 1. Data Management Process.
	Figure 2. Feature Classes in InputData Geodatabase.
	Figure 3. IntermediateData Geodatabase.
	Figure 4. InternalData Geodatabase.
	Figure 5. MIREProject Feature Classes.
	Figure 6. MIRE Model Geodatabase.
	Figure 7. Model Relationships and Execution Sequence for “Create” Business Process.
	Figure 8. Model Relationships and Execution Sequence for “Update” and “Retire”
Business Process.
	Figure 9. Model 1 Import Data.
	Figure 10. Model 2 Prepare Background Data.
	Figure 11. Submodel c2.3 Create Temp Datasets.
	Figure 12. Model 3 Create New Intersections.
	Figure 13. Submodel c3.3 Populate Intersections.
	Figure 14. Create New Legs and Update Intersections.
	Figure 15. Submodel c4.5 Finalize Intersections.
	Figure 16. Model 5 Create New Ramps.
	Figure 17. Model 7 Update or Retire Intersections.
	Figure 18. Submodel u3.1 Update Intersection Status.
	Figure 19. Submodel u3.4 Populate Intersections.
	Figure 20. Model 8 Update Legs and Intersections.
	Figure 21. Parameters of Script Calculate Intersection Angle.
	Figure 22. MIRE Toolbar.
	Figure 23. MIRE Toolbar Solution.
	Figure 24. Class clsConfiguration.
	Figure 25. MIRE Tool Configuration File.
	Figure 26. Intersection Attributes.
	Figure 27. Ramp Attributes.
	Figure 28. Delete Intersection Button on the MIRE Toolbar.
	Figure 29. Create Intersection Button on MIRE Toolbar.
	Figure 30. Export Intersection and Approach Data Button on Mire Toolbar.
	Figure 31. Export Intersections and Intersection Leg Data.
	Figure 32. RDE Tool Database Domain Values.
	Figure 33. RDE Tool Geodatabases.
	Figure 34. ArcMap Feature Dataset Properties.
	Figure 35. WSDOT Shapefile Geospatial Data.
	Figure 36. WSDOT Feature Class Geospatial Data and Tabular Data.
	Figure 37. WSDOT RDE Tool Models.
	Figure 38. Model Relationships and Execution Sequence for WSDOT “Create” Business Process.
	Figure 39. Model Relationships and Execution Sequence for WSDOT “Update” Business Process.
	Figure 40. MoDOT RDE Tool Models.
	Figure 41. Model Relationships and Execution Sequence for MoDOT “Create” Business Process.
	Figure 42. Model Relationships and Execution Sequence for MoDOT “Update” Business Process.
	Figure 43. Intersection Entity-Relationship Diagram in MIRE Data Model.
	Figure 44. Intersection Leg Entity-Relationship Diagram in MIRE Data Model.
	 Figure 45. Segment Entity-Relationship Diagram in MIRE Data Model.
	Figure 45 (Continued). Segment Entity-Relationship Diagram in MIRE Data Model.
	Figure 46. Ramp Entity-Relationship Diagram in MIRE Data Model.
	Figure 47. Interchange Entity-Relationship Diagram in MIRE Data Model.
	Figure 48. Horizontal Curve Entity-Relationship Diagram in MIRE Data Model.
	Figure 49. Vertical Grade Entity-Relationship Diagram in MIRE Data Model.
	Figure 50. Main Entities in Safety Analyst Data Model.
	Figure 51. Intersection Entity-Relationship Diagram in Safety Analyst Data Model.
	Figure 52. Intersection Entity-Relationship Diagram in Safety Analyst Data Model.
	Figure 53. Segment Entity-Relationship Diagram in Safety Analyst Data Model.
	Figure 54. Ramp Entity-Relationship Diagram in Safety Analyst Data Model.

